
The ALICE Off-line strategy
a successful migration to OO

F. Carminati1, R. Brun1, F. Rademakers2

For the ALICE Off-line Project – ALICE Collaboration

1 CERN Geneva, Switzerland
2 GSI, Darmstadt, Germany

Abstract

The ALICE experiment has chosen to start developing its software directly in OO, using
the services of the ROOT system, which is ALICE’s candidate for the common LHC frame-
work. This has lead to the definition of a complete environment (AliRoot) where the software
developed by the different experimental groups is being integrated.

Different test-benches for I/O and Simulation have been set up based on real production
code. This allows early assessment of technology, both software and hardware, in a realistic
production environment. Different codes such as GEANT 4, GEANT 3 and FLUKA, or the
reconstruction algorithms by the physicists developing the detectors, can be easily integrated
in the framework, which has shown to be both evolutive and modular.

The ALICE Collaboration has adopted this setup and we are now successfully migrating
the users into it. This talk describes the AliRoot environment and its future evolution.

Keywords: ALICE, CHEP, OO, migration, ROOT

1 Introduction

The development of the ALICE Off-line Framework started at the beginning of 1998. At that
time there was no unified framework and the software was composed by a number of independent
FORTRAN codes used to prepare the Technical Proposal (TP).

The development of a unified framework had already started a few years earlier for the
CMS[1] and ATLAS[2] collaborations. There, the FORTRAN code used for the TP was devel-
oped into a full blown FORTRAN environment used also for the sub-detectors’ Technical Design
Reports (TDRs), while the development of a new environment was started based on the R&D work
done in the Information Technology Division[3, 4, 5], with a longer time perspective. ALICE is a
comparatively small collaboration, and it could, therefore, not afford two lines of development. In
ALICE code cannot be rewritten, it must be reused.

In ALICE Off-line and physics performance groups are merged into a single team. The
producers of Off-line code in ALICE are working on the development of the long-term framework
but at the same time they have to provide working code to the physics community to prepare
the TDRs. This is made particularly difficult as the official products for LHC, developed by the
R&D collaborations approved by LCB[6] in collaboration with IT were not (and are still not)
production ready. On the other hand, the physics user community was not very conversant with
C++ and Object Oriented (OO) programming in general. Few users were indeed very advanced,
while another small minority was definitely opposed to change, but the large majority of users
seemed to be very confused on which direction to take.

This situation posed a substantial challenge to the ALICE Off-line project, not different in
essence to the one posed to the other LHC experiments, but made more difficult to face due to the
peculiarities of the ALICE experiment. The ALICE Off-line Project had to provide a tool to the



user community to design the detectors, whilst developing a framework that could be reused and
evolved, and, at the same time, train and involve the user community in this process.

2 ALICE’s strategy

The first problem was the development of a coherent simulation framework. GEANT 3.21[7] is
a well tested and solid program, but linked to the old CERN Library environment. Its develop-
ment ended in 1993 and it has been on minimal maintenance since. It has numerous well known
limitations in hadronic and muon physics. GEANT 4 is a brand new product, which is still evolv-
ing. Its first production release happened in January 1999 and its hadronic part is comparable to
GEANT 3. FLUKA[8, 9] features excellent physics, and is in fact used for critical studies such
as radiation backgrounds and radio-protection, but it is essentially a stand-alone code and rather
difficult to use for full-detector simulation, principally due to the limitation in its user interface
and geometry.

Faced with this situation we have taken a pragmatic approach based on two decisions:

• There should be only one line of development, forward evolutive, which means based on
OO design and implemented in C++

• Only existing working products should be used, even if the ongoing R&D activities should
be monitored closely

This resulted in the adoption of ROOT[10] as the base for our framework, and the use
of GEANT 3.21 as the detector simulation program. Radiation studies and specialised detector
simulation are done with FLUKA outside the framework, for the moment.

As we intended to provide a forward evolutive framework to be used by all ALICE physi-
cists, we have wrapped GEANT 3.21 to make it look like a C++ program (class TGeant3). The
graphics sub-system from GEANT 3 based on HIGZ has been interfaced to call the ROOT graph-
ics and the interactive interface based on KUIP has been replaced by the more powerful features of
the ROOT C++ interpreter. A special version of the CERN Library Routines needed by GEANT
has been developed, where in particular the I/O routines of ZEBRA have been removed. All calls
to GEANT 3.21 go via an Virtual MonteCarlo abstract interface. The GEANT user code has been
completely written in C++ and all I/O is performed via ROOT.

This is the only official framework offered to physicists. In order to run simulation or
analysis jobs they have to use this OO environment. However, we have decided to allow and help
users to interface existing FORTRAN codes with the framework. As of today, ALICE software is
almost completely written in C++.

Central distribution and documentation has been organised[11], as well as training courses
on ALICE’s specific environment. The complete code is available on the web, automatically
hyperised, thanks to the ROOT documentation tool.

3 The software development process

The key to the success of this policy is the proper organisation of the software development pro-
cess. The necessity to provide, in the short term, working tools is considered contradictory with
the advantages of proper design. As a matter of fact, this is a surprising opinion held by many
experts in the field. Of all analysis and design techniques, OO seems to be the most suitable to fast
prototyping techniques, as it allows a very large degree of freedom thanks to the combined use of
inheritance, virtual interfaces, polimorphism and data hiding.

The need to have at any point in time a working tool for production, combined with the
constant pressure to evolve and meet the need of the users, has naturally lead us to adopt a fast



prototyping – fast feedback software development model, based on existing off-the-shelf compo-
nents.

During the course of the past two years we have progressively adopted a model which is
composed of macro-cycles and micro-cycles. During normal development the new version of
the code is constantly updated by the developers. This is physically achieved via a CVS server
accessible remotely by all ALICE members in read only mode and developers in read/write mode.
These are micro-cycles possibly discussed and reviewed at the weekly Software Coordination
Meetings.

When the development of the code requires major modifications to the structure, a Software
Meeting is organised (at CERN or at an external location) and major design choices are taken and
implemented. These are macro-cycles that involve step-wise evolutions of the framework. This
development model seems well adapted to the needs of an HEP experiment.

During a fast development phase it is necessary to make sure that the code does not diverge
from the original spirit. A set of coding conventions can be of great help to increase the readability
of the code and hence to reduce the time to understand and analyse a new piece of code. After the
closure of the Spider[24] IT project, ALICE has started a collaboration with an Italian research
institute[26, 27] to develop a code checking tool (RuleChecker[28, 29]). This has been written
from scratch in Java, based on open source components in three months. The first version of the
tool is already in production. A two-year development plan is foreseen, including the develop-
ment of a reverse engineering tool that will reuse the components of the RuleChecker and will be
customisable to understand ROOT containers.

An important part of the model is communication. Mailing lists are extensively used to
communicate problems and solutions and detailed information is put on the web, so that the novice
user is able to run some simple simulation and analysis examples himself.

Training sessions are regularly organised on framework during major ALICE meetings,
open to all ALICE members. These sessions are targeted to the ALICE Off-line environment
and have the objective to enable the participants to run simple jobs and modify them to start
implementing their own code. After following these courses, most of our users look for, and
attend, specialised training in OO analysis and design and in C++ to improve their skills, learn
how to use the framework more effectively and participate in its development. Their reaction
to this further training is usually positive and the user community is expanding rapidly within
ALICE. This is in striking contrast with the frustration usually reported by physicists who follow
the OO courses first, and then are confused on how to translate the notions acquired into practice.

4 The choice of ROOT

The above scenario can only be implemented if there is a robust support for some fundamental
functions such as:

• object store and retrieval
• simple 2D and 3D graphics
• interactive data analysis, histograms, ntuples-like objects and basic operations on them such

as fitting, rebinning and so on
• support for a scripting language

In the absence of this, the only solution is to use PAW[12] for data visualisation, which
is intimately linked to the CERN Program Library FORTRAN environment. Without an OO
system that integrates all this functionality it is unrealistic to hope to move the user community
to OO design and programming. In particular, without the ability to store objects and a seamless
interaction between the objects stored and the visualisation tools, the effectiveness of any new



system will not exceed the one of PAW, hindering the transition for the normal user.
ROOT indeed provides the needed functionality, and this is the main reason for our choice

of using ROOT as the base for the ALICE Off-line framework. However, there are at least two
more reasons that make of ROOT the best candidate for our framework.

The development of ROOT is based on rapid prototyping and frequent user feed-back, in a
way that much resembles the ALICE software development process. This makes the interaction
between the Off-line development and the framework development fruitful and seamless.

The second reason that makes ROOT a formidable help to the development of an OO frame-
work by physicists who are not necessarily knowledgeable in OO analysis and design, is the choice
of C++ as a scripting language. The typical development process starts with a simple C++ script
that loops over the data. It is quite simple and intuitive for any physicist with some experience in
programming to extend the script and make a simple analysis. When this finally becomes a mature
program, it can be directly inserted into the existing class structure and be available from a shared
library, and the cycle can restart.

The capability of ROOT to be extended with user classes, with an automatic extension of the
run time type identification (RTTI), browsing, user interface (UI), I/O and documentation features
is also another winning point, which has allowed ALICE to develop with few man-months of effort
a complete OO simulation framework.

There is a long-standing debate in the physics community on the modularity of ROOT.
The underlying assumption is that modularity is necessary at all levels. We believe that this is a
misconception. Modularity means the ability of replacing one part of the code with another one
offering a better or different functionality without disrupting the operation of the rest of the code.

But modularity implies granularity, every module in the system is considered as sort of
monolithic black-box. In ALICE we have concentrated on the modularity of the user part of the
framework, while we are profiting form the tight integration of ROOT containers, I/O and data
visualisation. We do not believe that the benefits derived from an increase in the modularity of
these components would compensate the increase in complexity coming from the definition of
abstract interfaces exposed to the user.

Note however, that this does not mean that ROOT itself should not be or in fact is not
modular. The interfacing of ROOT to the RFIO system for instance, developed for the ALICE
data challenge, is an example of how ROOT can seamlessly integrate different I/O subsystems
without modifying the user application.

Having chosen to migrate immediately and completely to C++, we have been much more
worried by the modularity of our simulation system, where we wanted to insulate ourselves from
any specific MonteCarlo framework and, above all, we decided not to depend on the time schedule
for GEANT 4, and this seems up to now a very wise choice.

5 The ALICE framework

As was said above, the first development of the framework was intended to provide an environment
for simulation that could respond to the following requirements

• be a genuine OO framework, including I/O
• exploit GEANT 3.21 initially
• be capable of migrating to GEANT 4 with maximum code reuse

In order to do this we introduced a virtual MonteCarlo interface and wrapped GEANT 3.21
as a derived class from this. All user code is in C++, including the hit generation and recording
routines, and all direct dependence on GEANT 3.21 is hidden via the abstract interface as shown
in Figure 1. With this simulation code we have performed the majority of the studies for the TDRs



Figure 1: Structure of the Virtual MonteCarlo

and are now preparing to produce the Physics Performance Report.
The main advantage of this system is that while the interactive capabilities of GEANT 3.21

have been preserved, the event loop is now under the control of ROOT and the scripting language
is C++. The dependency on the CERN Program Library has been minimised and only GEANT
and a small part of ZEBRA (MZ) are required. The KUMAC steering script and the FFREAD
data cards of GEANT 3.21 have been replaced by a C++ script, much more flexible and powerful
(Figure 3). The replacement of the FORTRAN switch-yards with the virtual function calls (see
Figure 2) and of the FORTRAN static libraries with the ROOT-like shared libraries has introduced
a large gain, as is reported in Table I.

Figure 2: Stepping routine control in the Virtual MonteCarlo

We have made a large investment to interface GEANT 4 to our virtual MonteCarlo[23],
employing 2 people for 2 years. The geometrical interface is almost ready while the interface to



Table I: Comparison FORTRAN and C++ simulation framework
Item FORTRAN code C++ code
Time to link < 40 sec < 1 sec
Time per event 710 min 435 min
Size of executable(disk) 11MB 450kB
Size of executable(memory) 24MB 23MB

the hit generation routines is still under development. This approach turned out to be very effective,
as we are directly testing the capabilities of GEANT 4 to provide the functionality needed by a
mature production environment.

As far as FLUKA is concerned, in principle it could be integrated in the same environ-
ment, even if this will depend on the available manpower. CERN management has announced its
intention to provide official support for FLUKA and this may ease its integration in the ALICE
framework.

Figure 3: Control flow of the Virtual MonteCarlo

Having different MonteCarlos in the same framework is the only way to really compare
them both for performance and for physics results, eliminating the problem of conversion of the
different outputs. At the moment, the ALICE framework is the only one allowing this kind of
comparison.

Our successful experience with the ROOT framework for the simulation naturally lead us
to develop reconstruction in the same frame. The resulting infrastructure can be seen in Figure 4.

It can be seen that we can have our output in Objectivity[25], even if, at the moment, we do
not plan to use this possibility. We have performed extensive tests of I/O of ROOT data structures
with Objectivity, and it is completely feasible, even if the ROOT performance is better in all
the cases analysed. The ROOT persistency mechanism is able to directly use our classes and an
interactive user can immediately visualise any class attribute via the mechanism of ROOT Trees.
An implementation based on Objectivity, in ALICE, would imply the creation of a transient and a
persistent object model, making our life far more complicated.

In our framework (AliRoot) every sub-detector is a module and it is independent from the
other modules. Modules contain their specific data structures, i.e. hits (precise signals coming
from the MonteCarlo), digits (simulated or real signals), reconstructed space points, simulated



Figure 4: Structure of AliRoot

clusters and all intermediate structures. The module also contains the procedures to transform
its structures, to build its own geometry and draw itself. For every module there are different
versions that are subclasses of the main class. When simulated data is written on disk, the module
class is also. When the simulated data is read back, the right module class is read back, and the
appropriate methods for data handling (reconstruction, visualisation, analysis) are loaded. This
greatly reduces the possibility of processing errors, and it is combined with the ROOT schema
evolution to accommodate changes in the data over time.

Dependencies between modules have been eliminated and all communications go via inter-
faces (more or less purely virtual) at the level of the steering module. This allows a great flexibility,
as the detector can be configured with a simple C++ script. Generators are also loaded via a virtual
generator interface and any of the available generators can be loaded at run time. The flexibility
of the system is such that even the transport MonteCarlo (GEANT 3 or GEANT 4) is decided at
run time via the configuration script.

Data which is not module-specific (event data) is handled by global data managers (some-
times called blackboards). The general scheme of the AliRoot architecture can be seen in Figure 5.

This framework is currently used in production by the ALICE collaboration. It consists of
153kLOC of C++, 39% of which is generated automatically by ROOT. The residual amount of
FORTRAN is less than 5% and it is in the process of being translated into C++.

6 The ALICE Mass Storage Project

The storage of data for ALICE is particularly challenging. During ion runs raw data will be taken
at a rate exceeding 1GB/s. The combined amount of raw data from proton and ion runs will
approach 2PB per year, to which should be added all the derived data and the data coming from
simulation. The ALICE Off-line and DAQ projects are looking very closely at the technological
alternatives to cope with this situation, both in the area of OO databases and of hierarchical mass
storage systems (HMSS).

The RD45 collaboration has recently delivered its conclusions to the LHC Computing Board
[6] on OO databases for HEP. The initial confidence that a specific commercial product could solve
all the problems of LHC computing seems now substantially misplaced. The penetration of Objec-
tivity in HEP is still very limited (CMS test beams, BaBar, COMPASS in the near future). The first



Figure 5: Architecture of AliRoot

use of Objectivity in a real production environment has been riddled with serious problems[13].
The development of a home-grown persistent object manager (POM) is considered as a possible
alternative to reduce the risks connected with commercial products, but at a very high cost (50
man/years)[14].

The ALICE Collaboration is seriously considering the use of ROOT as an object store,
augmented by a simple relational database for the event database. To better assess the situation
we have made a series of comparative tests between ROOT and Objectivity [15]. This comparison
aimed at evaluating optimisation effort, ease of use and performance for ROOT and Objectivity
with a real object model and (simulated) data. Also, we wanted to test the flexibility of our
framework.

These tests taught us that cooperation between the two systems is possible. A naive use of
ROOT is simple and robust, with performances close to optimal, while a naive use of Objectivity
is impossible: some of the features are hardly understood by the experts, and their effect on the
behaviour of the system is difficult to evaluate and control. Our test has shown real time and size
performance of ROOT as superior to Objectivity.

The other element that we are testing is the HMSS component. For this we have a close
and successful collaboration with CERN IT division in the framework of the ALICE Mass Stor-
age Project[16]. The objectives of this process are to assess our computing model in realistic
conditions, using high-end off-the-shelf technology. This project is also used to develop integra-
tion between DAQ and Off-line, develop an event model and provide a framework to assess new
technologies.

The first test conducted in this project was the data acquisition for the NA57 experiment
using the HPSS[18] HMSS from IBM. After its successful completion, ALICE decided to conduct
a campaign of tests involving commodity hardware and the ALICE Off-line and On-line software
- progressively leading to the final system, both in functionality and performance. The first Data
Challange was run in April 1998 [19].

After seven days of running with the setup shown in Figure 6 we obtained the results shown
in Table II.

This benchmark tested, for the first time, the DATE[17] (the ALICE data acquisition sys-



Figure 6: Setup of the first Data Challange

Table II: Results of first Data Challange

Number of files 15,436
Number of events 16,229,520
Mbytes in 7,261,382
Mbytes out 6,896,198
Aggregate rate in (MB/s) 14.7
Aggregate rate out (MB/s) 13.9
Total stored to HPSS (TB) 6.9

tem), GBit Ethernet, HPPS, ROOT and the ALICE Off-line Framework all together, creating one
of the largest OO databases in HEP. This stress-test allowed us to detect some weak points of
HPSS that had not appeared before. Raw data was objectified by ROOT at 14.7MB/s. This means
that with today’s technology we could record the ALICE data with 300 high-end PCs, a large but
not unrealistic figure.

A second Data Challange is planned in the first quarter of 2000[20] according to the schema
of Figure 7. The plan here is to reach 100 MB/s testing both the home grown CASTOR HMSS and
HPSS. This will allow us to progressively develop the event model. Instead of random bit patterns
as we used in the first Data Challange, simulated digits will be used, and an embryonic level three
filter (L3) will be tested.

This test-bench will develop in the future to test different hypotheses of on-line filtering and
L3 reconstruction. Different data access patterns will be implemented and evaluated, both locally
and remotely. Different HMSS systems will be used in the tests, with the aim of evaluating and
comparing them. The next candidate HMSS to be included in the test is Eurostore II[21]. This
testbench will also be used as a base for the prototypes of distributed computing to be developed
in the context of the Monarc[22] project.

It is important to underline that all the tests are performed with commodity hardware and
production software. This means that they are at any time a snapshot of what could be done in
practice at that moment. Improvements and modifications suggested by the tests are directly fed
back into the ALICE production Off-line software. This enables us to detect and solve possible



Figure 7: Setup of the second Data Challange

problems very early in the development process and it ensures a smooth evolution into the final
system giving us us full confidence in its reliability.

7 Lesson learnt

ALICE has been the first LHC experiment to operate a complete transition to OO analysis and
design and to C++ for its production framework. Although the construction of the ALICE frame-
work is only at the beginning, this collaboration-wide experience has provided us with a host of
information on the transition to C++.

C++ is a very complex language, Stroustrup himself has been quoted with the remark that
nobody understands it all. It is well known that it is full of redundancies and the code written
can be very obscure. On the other hand FORTRAN is simple and well understood by the user
community. To migrate to a new environment only makes sense if this is not just better, but also
simpler for the user. This requirement may seem to be contradictory with the features of C++.

A no-way-back approach is the only possible strategy. Otherwise users will decide to mi-
grate tomorrow and this can go on for decades. But this strategy works only if there is strong
central support, proper training and considerable flexibility to respond to users’ needs. Train-
ing should target the framework, not the underlying analysis and design philosophy, as physicists
should be able to use it as soon as possible. Proper training may follow later. To do this a func-
tional framework has to be present, hence the need to use ROOT as the only functional framework
providing the PAW functionality in the OO paradigm and much more.

Initially it was important to accept FORTRAN code for some of the methods, as not every-
thing could be rewritten at once. Far from being a compromise, the re-engineering of this code
has been, for the most part, an ideal starting point for people not familiar with C++.

In spite of what has been said and written, users, and in particular remote users, are ready to
migrate to OO and C++ if there is a clear infrastructure and a direction for development. Support
and consultancy are the key to success here. In ALICE we have invited remote users at CERN for
periods of one or two weeks and we have done the work with them, day by day, showing them how
to solve their problems in the new environment. These users have been active in AliRoot since,
and they have transmitted their knowledge to their colleagues.



Physicists are afraid to be unproductive during a technological transition. If we show them
that they can indeed work with the new framework in a more efficient and elegant way, they will be
the first to push for change. In ALICE we had several examples of senior FORTRAN programmers
who have become prime contributors to the new structure. This is even truer for remote users, who
will leave their existing environment only when it is clear what the new one is and that there will
be support for this.

In some sense modularity is the last thing these users want. Knowing that they can change
their histogramming package and I/O back-end at will does not help but rather frighten them. A
single integrated environment which is well supported, portable and free is their basic requirement.

Prototyping is an essential part of our strategy and allows us to constantly monitor the
evolution of our framework and the feasibility of our requirements. The close collaboration with
the On-line group, which has adopted ROOT as the visualisation system for DATE, reinforces this
strategy and avoids divergences in the development.

8 A look to the future

The experience of the transition to OO design and C++ has taught us that this is less difficult than
anticipated, if the right environment is present. The main issue is perhaps the confidence building
process by which users trust a new environment and dare leaving the old one, because they become
convinced that there will be support, documentation and help, and that their investment will not be
wasted.

The major problems indeed originate from the C++ complexity. These are not bugs, but
design features, aimed principally at providing a language that can be extremely efficient and that
keeps a very high degree of compatibility with C. We are certainly not the first to discover all this.
In fact Java has been developed starting from similar considerations, as a simpler and better C++.

This poses the problem of operating another transition in the future, possibly to Java, in
a few years from now. This may be very difficult for several reasons. The code developed will
be very large by then, and we cannot think of rewriting it. The users will take it very badly, in
the sense that this could break their confidence. A possible solution would be to artificially limit
the richness of C++ to a subset that is self-consistent, has all the functionality we need, and we
imagine can easily be translated into another idiom. The first part of this work has already been
done by the authors of Java, so we are considering the possibility to define a set of coding rules
that would make our C++ Java compliant. These rules could be implemented as an extension of
our existing coding rules. For instance we are already discouraging the use of the C++ templates
facility and encouraging the use of polymorphic containers. The Java front-end to ROOT currently
being developed in collaboration with FNAL will also help in this possible long term transition
process.

If this could be done successfully, we would reduce the complexity of the code without
compromising on functionality or performance, and ease the transition to future technologies.
This evaluation is already going on as a part of the contract with IRST and we will take a decision
on this matter during this year.

9 Conclusion

Thanks to the adoption of ROOT and the decision to make an early migration to an OO framework,
we have built a coherent and modular infrastructure. User migration is not a major problem and
different components, both FORTRAN and C++, can be seamlessly integrated in our system.



Burning the bridges is necessary at some point to change technology, but this is possible if
a robust integrated environment is there before asking the users to move, and if enough support
and training is provided. AliRoot has already been instrumental in the studies for the TDRs and
we are confident it can evolve into a fully blown Off-line framework for the ALICE experiment.

References

1 CMS Computing Technical Proposal
2 Atlas Computing Technical Proposal
3 http://wwwinfo.cern.ch/asd/geant4/geant4.html
4 http://wwwinfo.cern.ch/asd/rd45/generalInfo.htm
5 http://wwwinfo.cern.ch/asd/lhc++/index.html
6 http://www.cern.ch/Committees/LCB/welcome.html
7 http://wwwinfo.cern.ch/asd/geant/
8 A. Fassò, A. Ferrari, J. Ranft and P. R. Sala, “FLUKA: present status and future devel-

opments”, Proceedings of the IV International Conference on Calorimetry in High Energy
Physics, La Biodola (Elba), September 19-25 1993, A. Menzione and A. Scribano eds.,
World Scientific, p. 493 (1994).

9 A. Fassò, A. Ferrari, and G. R. Stevenson, “Forward Shielding for Intermediate Energy
Proton Accelerators”, Proceedings of the “Specialists’ Meeting on Shielding Aspects of
Accelerators, Targets & Irradiation Facilities”, Arlington, April 28-29 1994, published by
OECD/NEA (1995), p. 155.

10 http://root.cern.ch
11 http://alisoft.cern.ch/offline
12 http://wwwinfo.cern.ch/asd/paw/index.html
13 http://lcb99.in2p3.fr/DQuarrie.htm
14 http://wwwinfo.cern.ch/asd/cernlib/rd45/workshops/july99/espresso/

tsld001.htm
15 ALICE internal note in preparation
16 http://wwwinfo.cern.ch/pdp/ps/msp/msp.html
17 http://aldwww.cern.ch/
18 http://www.sdsc.edu/hpss/hpss1.html
19 http://root.cern.ch/root/alimdc/alimd_0.htm
20 http://root.cern.ch/root/alimd100/md100_0.htm
21 http://www.cern.ch/eurostore/
22 http://www.cern.ch/MONARC/
23 http://home.cern.ch/~ivana/AliceG4/G4Main.html
24 http://www.cern.ch/SPIDER
25 http://www.objectivity.com
26 http://www.itc.it/
27 http://www.itc.it/enITCirst/index.htm
28 http://zeus.itc.it:4444/
29 Alessandra Potrich and Paolo Tonella, “C++ Code Analysis: an Open Architecture for

the Verification of Coding Rules”, to appear in the proceedings of CHEP’2000, Interna-
tional Conference on Computing in High Energy and Nuclear Physics, February 7-11, 2000,
Padova (Italy).


