
stem
re, the
ggests

her
rence

ct
ting
rator
re for
ent,
” that
s it will
ftware
other
r, event

groups
into
s with
. The
tector

y and
m that

ing
A Proposal for Converting the ATLAS DAQ Back-end Sub-system into
an Open Source Project

Bob Jones
CERN EP/atd

(Robert.Jones@cern.ch)

1.0 Introduction
This note presents a proposal for converting the existing ATLAS DAQ Back-end sub-sy

into an open source project. It presents an overview and the status of the Back-end softwa
motivation for moving to an open source project then identifies some issues involved and su
a structure for the organization of the project and a plan for how to proceed.

2.0 Overview of the Back-end sub-system
This section gives a brief overview of the ATLAS DAQ Back-end sub-system. For furt

information see the project’s web pages (http://atddoc.cern.ch/Atlas/) and most recent confe
papers [2].

2.1 Purpose and goal
The goal of the ATLAS data acquisition (DAQ) and Event Filter (EF) prototype “-1” proje

[1] is to produce a prototype system representing a “full slice” of a DAQ suitable for evalua
candidate technologies and architectures for the final ATLAS DAQ system on the LHC accele
at CERN. Within the prototype project, the Back-end sub-system encompasses the softwa
configuring, controlling and monitoring the DAQ but specifically excludes the managem
processing or transportation of physics data. The Back-end software is essentially the “glue
holds the sub-systems together. It does not contain any elements that are detector specific a
be used by many configurations of the DAQ and detector instrumentation. The Back-end so
is but one sub-system of the whole DAQ system. It must co-exist and co-operate with the
sub-systems. In particular, interfaces are required to the triggers, processor farm, accelerato
builder, detector read-out create controllers and Detector Control System (DCS).

2.2 The software component model
The user requirements gathered for the Back-end sub-system have been divided into

related to activities providing similar functionality. The groups have been further developed
components with well defined purposes and boundaries. The components have interface
other components and external systems, specific functionality and their own architecture
components have been grouped into two sets: core components and trigger/DAQ/de
integration components.

2.2.1 Core components
The core components of the Back-end sub-system constitute it’s essential functionalit

they had priority in terms of time-scale for development in order to have a baseline sub-syste
can be used for integration with the data-flow sub-system and event filter. The follow
components are considered to be the core of the Back-end sub-system:

AQ
One of
y the

t. The

e
d and

ble
ents

ions
ce for
rfaces
us and

line

an’t

ns.
(the
their

and
tion

erent
vision

e
tion,

e by
er of

erify

IX
vours
area

on the
• Configuration databasesare used to describe a large number of parameters of the D
system architecture, hardware and software components, running modes and status.
the major design issues of Atlas DAQ is to be as flexible as possible, parameterized b
contents of the configuration databases.

• Message reporting system(MRS) provides a facility which allows all software
components to report messages to other components in the distributed environmen
MRS performs transport, filtering and routing of messages.

• Information service (IS) provides an information exchange facility for softwar
components. Information (defined by supplier) from many sources can be categorize
made available to requesting applications asynchronously or on demand.

• Process manager(PMG) performs basic job control of software components. It is capa
of starting, stopping and monitoring the status (e.g. running, exited) of compon
independent of the underlying operating system.

• Run control (RC) is used to control the data taking activities by coordinating the operat
of the DAQ sub-systems, Back-end software and external systems. It has a user interfa
the shift operators to control and supervise the data taking sessions. It has software inte
with other DAQ sub-systems and Back-end components to exchange commands, stat
control information.

2.2.2 Trigger/DAQ/detector integration components
The following components are required to integrate the Back-end with other on

sub-systems and detectors:
• Resource manager(RM) allocates resources (hardware and software resources which c

be freely shared) and allows several groups to work in parallel without interference.
• Partition manager extends RM to allow the simultaneous operation of several partitio
• Test manager(TM) organizes individual tests for hardware and software components

individual tests themselves are not the responsibility of the TM which simply assures
execution and verifies their return status).

• Diagnostics package(DS) uses tests held in the test manager to diagnose problems
verify functioning status of separate components or the entire system (DS verifica
component) and to control the system, diagnose and recover problems during diff
phases of system functionality in automatic or operator assistance modes (DS super
component).

• Integrated graphical user interface(IGUI) allows the operator to control and monitor th
status of the current data taking run in terms of it’s main parameters, detector configura
trigger rate, buffer occupancy and state of the sub-systems.

• Online bookkeeperarchives information about the data recorded to permanent storag
the DAQ system. It records information on a per-run basis and provides a numb
interfaces for retrieving and updating the information.

• Event dumpsamples events from the data-flow to present them to the user in order to v
event integrity and structure.

2.3 Operational environment
It is expected that this environment will be a heterogeneous collection of UN

workstations, PC running Linux or Windows NT and embedded systems running various fla
of UNIX operating systems with real-time features (e.g. Lynx OS) connected via a local
network.

The Back-end software has been developed in C++ and ported to several compilers
Solaris, Linux, HP-UX, Windows NT and Lynx operating systems.

rage,
plex

e same
tforms
ting
oftware
rimary
). The
KS) is
ftware
nd a
sed to
user

lp pace
le (i.e.
to the
ies and
duce a
more

e not,
d to

aken
cing
ame
hence

have
nts have
e: an
tool
from

gement
ware
ith the

f the

vent
esults)
tion
2.4 Software technologies
The various components described above all require a mixture of facilities for data sto

inter-process communication in a LAN network of processors, graphical user interfaces, com
logic-handling and general operating system services. To avoid unnecessary duplication, th
facilities are used across all components. Such facilities must be portable across all the pla
used in the DAQ, in particular they must be available on the LynxOS real-time UNIX opera
system selected for use on the VME processors. Candidate open-source and commercial s
packages were evaluated to find the most suitable product for each technology. C++ is the p
programming language supported by a general purpose library (Rogue Wave’s Tools.h++
Objectivity/DB object-oriented database and a custom-made in-memory object manager (O
used for data persistence. Objectivity/DB is not necessary to run the core of the Back-end so
only to use the Online Bookkeeper component. Corba (ILU) is used for communication a
custom-made package (IPC) as a higher-level of abstraction. Finite state machines are u
implement object behaviour (CHSM) while Motif and Java are used to implement graphical
interfaces.

2.5 Software process
The development has been divided into a number of sequential phases intended to he

and organise the work. Each phase has been defined to produce an obvious deliverab
document and/or code) which is reviewed by the whole Back-end group before progressing
next phase. The phases are: collect requirements; identify and evaluate candidate technolog
techniques capable of addressing the common issues identified from the requirements; pro
design for each component covering the most important aspects; refine the design to add
detail; implement and unit test according to the design; integrate with other components.

The people involved in the Back-end sub-system come from many institutes and hav
in general, been able to work full-time on the project. Faced with this situation, we have trie
organise the work along the component structure. Typically, a single institute has t
responsibility for developing a component there by simplifying communication and redu
travel. Such component groups are small (up to a maximum of 5 individuals). The s
individuals have tended to follow a single component through the various phases and
ensured the continuity of the work.

2.6 Software development environment
Within the Back-end sub-system, elements of the software development environment

been assembled to cover the phases of the software life-cycle described above. Such eleme
been selected to be compatible with similar work in the off-line software groups and includ
object-oriented method (OMT/Booch) for analysis and design supported by a CASE
(Software Thru Pictures tool) whose facilities have been extended to import requirements
FrameMaker documents and generate code for various languages; a configuration mana
system using the ATLAS Software Release Tools [5]; testing tools to produce static soft
metrics (Logiscope) and code coverage measurements (Insure++) have been integrated w
SRT. Informal tutorials and official CERN training sessions have been organised for all o
above elements of the software development environment.

2.7 Status
Implementations exist for all the components listed above with the exception of the e

dump. Full documentation (requirements, high-level design, users’ guide, test plan and test r
exists for all core components and is currently being completed for the trigger/DAQ integra
components.

lving
ME

k-end
ased

r farm

m the

et can
ve it,
w pace

uces
n see

ther
e in
ndard

edge
nother

online
hence

nline
jects
test
ntries
nue
ftware

sign
ata lost
pects

es and
used in
stems
ojects

to the
Unit tests for individual components have been made [3] and integration tests invo
most of the components in various configurations including multiple workstations, PCs and V
processors [2].

Tests have been made with the data-flow sub-system of the project in which the Bac
system has been used to control and configure a prototype DAQ system including VME b
Read-Out Buffer (ROB) crates, the event builder and interfaces to the event filter processo
have been completed.

3.0 Open Source Projects
This section gives a very brief overview of open source projects and is paraphrased fro

web pages of the OpenSource Organization (www.opensource.org):
The basic idea behind open source is very simple. When programmers on the Intern

read, redistribute, and modify the source for a piece of software, it evolves. People impro
people adapt it, people fix bugs. And this can happen at a speed that, if one is used to the slo
of conventional software development, seems astonishing.

The open-source community has learned that this rapid evolutionary process prod
better software than the traditional closed model, in which only a very few programmers ca
source and everybody else must blindly use an opaque block of bits.

Please refer to the Open Source web pages for further information.

4.0 Motivation
There is a tendency in the HEP community to duplicate work performed in o

experiments by producing similar solutions for the same problems. This is particularly tru
experimental online groups due to their reliance on the very latest and hence non-sta
hardware technology. This is inefficient and also makes it difficult to capitalise on the knowl
and experience gained by physicists and engineers as they move from one experiment to a
or to industry. Commodity hardware and software has started to have an effect on such
environments. The advances of commodity systems leads to more standardisation and
creates more opportunities for sharing software.

In order to support the day-to-day, around the clock operation of the experiment, o
groups are often more centralised and focussed (i.e. participants work on fewer pro
concurrently) than their offline counterparts. But this situation is changing with the la
generation of experiments. For example, there are more than 50 institutes from 17 cou
involved in the trigger/DAQ system of ATLAS. Add to this the fact that host laboratories conti
to reduce their staff compliments and one can see a growing need for sharing online so
between experiments.

Development of online software is a very demanding activity. If there is a fault in its de
or implementation expensive accelerator beam-time may be wasted and precious event d
forever. There is no online equivalent of being able to re-run an analysis program. These as
have tended to make online developers more cautious in their choice of software packag
caused them to seek as much control as possible over the origin of the software they have
order to ensure its reliability. The current move from proprietary to open source operating sy
(e.g. Linux) and application software (e.g. the Apache web server) has shown that such pr
can produce high-quality and reliable products.

In addition to the general trends outlined above, there are a number of points specific
Back-end sub-system that justify proposing it as the basis for an open source project:

hole
roject
e the
fined
, it has
ts for
and
lead
pen

have

rs can
RN
nce)

ents

LAS
ome
code,
ld fall

code,
who
ector

o the
isely
ents

mean
g to
end
at can

e is
ould

new

ssues

ercial

ing
• The existing Back-end sub-system is a distributed collaborative project spanning the w
of Europe. We have needed to adopt many if not all of the features of an open source p
to permit colleagues in the various institutes to collaborate on the project. To organis
Back-end sub-system and bring it to fruitition, it has been necessary to adopt a well de
structure, architecture, software process and development environment. For example
been necessary to make extensive use of collaborative tools such as email lis
communication, a central repository for the source code, official releases, nightly builds
a web of information on all aspects of the project. This structure and organisation has
to a development culture which is very similar to that found in larger, well established o
source projects.

• Many collaborating institutes have expressed the wish to use the software they
developed for the Back-end sub-system on other projects and experiments.

• Due to the Back-end’s architecture and exceptional level of documentation, develope
quickly become familiar with its operation and internal organisation. For example, CE
summer students assigned to the project (physicists with little programming experie
were productive after two weeks of work.

• The extra effort required to permit the software to be used in other projects and experim
is relatively small compared to that being put into the Back-end today.

• There is a natural reticence in other development groups, even within the AT
experiment, to commit to the use of the Back-end sub-system without having s
guarantee for the long term survival of the software. By giving access to the source
such groups have a safety-net on which they can rely in case the Back-end group shou
into disarray.

• By providing all the features of an open source project including access to the source
it will enable those people not currently involved in the development of the software but
rely on its functionality (such as those people working in detector groups to provide det
specific read-out software) to participate more easily in the project.

• Participation can be in many forms starting with problem reporting. Providing access t
specifications, design and code of the software will make it easier for people to prec
pin-point the cause of the problem. Access will also permit them to suggest improvem
and solutions of their own. The very act of reading the documents and source code will
they are participating in the inspection and review of the software and hence helpin
improve its quality. Formal inspection of software, as currently performed in the Back-
sub-system [4], is a necessary but labour intensive task and so any technique th
distribute the load must be considered seriously.

• Participation can also be in the form of documentation. If an area of the softwar
insufficiently documented or documented from another point of view, developers c
provide their own documentation which would become an artifact of the project.

• Participation can also be in the form of new components or porting existing software to
platforms.

5.0 Issues
In order to turn the Back-end sub-system into an open source project, a number of i

that are identified in this section need to be addressed.

5.1 Use of third party software
The Back-end software relies on a number of open-source, public domain and comm

third party software packages to provide specific functionality. The packages used are:
• ILU from Xerox Parc

This package provides the CORBA communication implementation. It carries the follow
license information:

fied
tware
ative
Any

h all

e in
r this
e are
with

nse

p at
are

e code
along

.

anager

carries

LIPS

o no

for all

t the
that
ithout

and
e copy

uch

are
n:
t fee
ear in
g to
e of
Unlimited use, reproduction, modification, and distribution of this software and modi
versions thereof is permitted. Permission is granted to make derivative works from this sof
or a modified version thereof. Any copy of this software, a modified version thereof, or a deriv
work must include both the above copyright notice of Xerox Corporation and this paragraph.
distribution of this software, a modified version thereof, or a derivative work must comply wit
applicable United States export control laws.
• Tools.h++ from Rogue Wave

This is a commercial general purpose C++ library similar to STL. It was selected for us
the project before STL became widely available. CERN bought source code licenses fo
product since it was also used in initial releases of the RD44 (GEANT4) project software. W
not allowed to distribute the source code for this package. We intend to replace Tools.h++
STL.
• ACE by Doug Schmidt of Washington University

ACE provides C++ wrappers for operating system interfaces. It carries the following lice
information:

ACE(TM) and TAO(TM) are copyrighted by Douglas C. Schmidt and his research grou
Washington University, Copyright (c) 1993-1999, all rights reserved. Since ACE and TAO
open source,free software, you are free to use, modify, and distribute the ACE and TAO sourc
and object code produced from the source, as long as you include this copyright statement
with code built using ACE and TAO.

We are currently phasing-out the use of this package since it has become redundant
• CHSM by Paul J. Lucas.

This package implements the state machines used by the run control and process m
components. It is distributed as source code and carries the GNU General Public License.
• CLIPS from NASA

This is a C based expert system tool used as a basis for the diagnostics package. It
the following license information:

Copies of CLIPS executables, source code, and documentation obtained from the C
download site can be freely used and redistributed without restrictions.

CLIPS is now maintained as public domain software by the main program authors wh
longer work for NASA.
• CommandLine by Brad Appleton

This is the C++ package used to manage command line switches and parameters
programs developed within the Back-end. It carries the following license information:

Permission is hereby granted to freely copy and redistribute this software, provided tha
author is clearly credited in all copies and derivations. Neither the names of the authors nor
of their employers may be used to endorse or promote products derived from this software w
specific written permission.
• Motif toolkit from the The Open Group

The Motif graphical toolkit is covered by The Open Group Master Software License
distinguishes between different agreements such as source code, object code and run-tim
licenses. LessTif is a freely available Motif toolkit clone included in many Linux distributions s
as RedHat and covered by the GNU Library General Public License (LGPL).

A number of freely available graphical widgets based on the Motif (or LessTif) toolkit
used in the OKS interfaces. The XBaeMatrix widget carries the following license informatio

Permission to use, copy, modify and distribute this material for any purpose and withou
is hereby granted, provided that the above copyright notices and this permission notice app
all copies, and that the name of any author not be used in advertising or publicity pertainin
this material without the specific, prior written permission of an authorized representativ
Bellcore and current maintainer.

ree

ll the
other
ilable

r own

ther
end

used
may

at the
ectly
yone
t open
ability

imilar
rojects

sing

and

tinue
with

ined
dified
ants

sible
eds of
ith the
g the

nd
of many
The XmHTML widget carries a GNU Library General Public License and the XmT
widget is in the public domain.

It has been necessary to make small modifications and add additional files to a
packages in order be build them with the SRT release management tool and port them to
platforms, notably LynxOS. Hence they are not exactly the same as the original versions ava
from the authors. The authors normally do not want to incorporate such changes into thei
versions because each has their own (often incompatible) build and configuration system.

Objectivity/DB is a commercial object database system used by ATLAS and o
experiments offline software. It is currently required for the Online Bookkeeper Back-
component but it is not installed in SRT or distributed on the CD-ROM.

The SRT configuration management tool is based on autoconf and GNU make. CVS is
as a repository. The current policy of storing third-party packages in the project’s repository
need to be reviewed to simplify tracking updates in such packages.

5.2 Selection of a suitable license
It is necessary to apply some form of license to open source software to ensure th

identity of the developers is associated with the source code (since they will not be dir
rewarded financially for their contributions) and guarantee that it remains available for ever
to use and improve. The Open Source Definition summarizes the qualities of a license tha
source developers have found necessary from a practical standpoint to maintain project vi
in an open source context.

There are several popular open source licenses circulating on the Internet which are s
but have subtle differences affecting how the software can be distributed and used in other p
and commercial products. Such licenses include:
• BSD license
• GNU General Public License
• GNU Library General Public License
• Artistic License (created by Larry Wall for use with Perl but is legally less precise)
• Mozilla Public License and the related Netscape Public License

Several HEP projects, for example ROOT and GEANT4, have created their own licen
policy.

It will be necessary to adopt a suitable licensing policy, possibly one of the above,
include it in the source code and as part of the official releases.

5.3 Support
Even though access will be provided to all the source code of the software, we will con

to distribute official releases in binary format, packaged for easy installation by end-users
quality assurance testing.

An appropriate level of support will be maintained for official releases to be determ
between the participants of the project and their respective institutes and experiments. Mo
versions, or versions built on alternative platforms will not be supported directly but particip
will provide assistance on abest effort basis.

Participating experiments will still need developers in their online groups to be respon
for areas covered by the Back-end software. The Back-end software will not cover all the ne
the experiment. Rather it should be seen as a third-party set of packages, to be integrated w
experiment’s own software. The experimental online groups remain responsible for ensurin
Back-end software worksfor themin their experiment. The advantage of making the Back-e
software an open source project is that the support load can be shared between developers

the

g into
urce

re is a
imary
patch

by the
-party
cking
in the

be
ame
s of

alised
new

ms the
n the
s as

e web.
s and
ource
ges is
with

osed
e of the

e to
their
as

ware.
orded
ttp://
made

also
ll be
experiments. Also experiments will, via participation, have a greater possibility to influence
content and development of the software.

5.4 Organisation
From the experience gained in developing the existing Back-end software and by takin

account the structure of other projects in HEP (e.g. GEANT4) and world-wide open so
projects (e.g. Mozilla) the following organisation is seen as being the most appropriate.

The basic unit of development is a component or package. For each package, the
single coordinator who is one of the developers working on the package and often the pr
author. The coordinator is responsible for fielding bug reports, enhancement requests,
submissions, and so on. The coordinator should facilitate good development, as defined
developer community. This is true for in-house developed packages and external third
packages as well. In the case of a third-party package, the coordinator is responsible for tra
the development of the package and selecting the most appropriate version for use with
project.

While all feedback and input is welcome for all packages from all developers, it would
useful if participants from a single institute or experiment could work together on the s
package. This would simplify communication, reduce travel and build regional centre
expertise.

Experience has shown that distributed development is the most efficient and centr
integration works best. This is currently how the Back-end sub-system is organised. When
packages are added or existing ones undergo major changes, the coordinator perfor
integration in close relationship with the software librarian, release organiser and testers o
CERN site. All such additions and modifications must follow a defined software proces
described in 2.5.

6.0 How to Proceed
Release 0.0.7 (known as the James Bond release) is available on CD-ROM and via th

This release includes full documentation (requirements, designs, user guides, test plan
results), header files, libraries and binaries for all supported platforms. It does not include s
code. The source code of all in-house components and publicly available third-party packa
visible via the web using the LXR tool. The corresponding UML class diagrams generated
the Together/C++ CASE tool are also available via the web.

Individuals, institutes and experiments who are interested in participating in the prop
open source project are recommended to start by evaluating the James Bond (0.0.7) releas
software to determine if it is suitable for their needs. All feedback is welcome.

Mechanisms (a problem tracking system, FAQ lists, newsgroup etc.) will be put in plac
ensure that feedback from participants is handled promptly and impartially, independent of
affiliation. Modifications and additions will be judged on their technical merit and quality
quickly as possible so that they can be included in future releases.

A training session is being organised for developers on how to use the Back-end soft
It will be a mixture of presentations and hands-on exercises. The presentations will be rec
(probably using the techniques developed for the Web Lecture Archive Project h
webcast.cern.ch/Projects/WebLectureArchive/index.html) and the exercises will be
available via the web. The training will then be accessible via the web at any time and could
be distributed on CD-ROM. The training session will be scheduled for Spring 2000 and wi
based on the forthcoming release 0.0.8 of the software.

of the
open

n open
ning,
rive the

s

dings

/EF
RT99/

0

ce,

was
). The
s paper
.org/
ed by

zilla
n to
vided
ause
sent
the
The steps described above represent incremental improvements to the organisation
Back-end group and software suite and hence the effort will not be wasted if the concept of an
source project is not retained. Should the proposal to turn the Back-end sub-system into a
source project attract sufficient interest a new document giving more details of the plan
resources, organisation and issues will be produced. This document could then be used to d
development of the project and produce regular releases of the software.

7.0 References
1 G. Ambrosini et al., The ATLAS DAQ and Event Filter prototype “-1” project, Computer Physic

Communications 110 (1998) 95-102. http://atddoc.cern.ch/Atlas/Conferences/CHEP/ID388/
ID388-1.html

2 I. Alexandrov et al., The Performance and Scalability of the Back-end DAQ sub-system, Procee
of the CHEP2000 conference

3 I.Alexandrov et al., Performance and Scalability of the Back-end sub-system in the ATLAS DAQ
Prototype, RT-99 Conference, Santa Fe, June 1999 http://atddoc.cern.ch/Atlas/Conferences/
RT175.ps

4 I.Alexandrov et al., Impact of Software Review and Inspection, Proceedings of the CHEP200
conference

5 L. Tuura, Overview of ATLAS Software Release Tools, Proceedings of the CHEP’98 conferen
Chicago, September 1998. http://www.hep.net/chep98/

8.0 Acknowledgements
Most of the information concerning open source projects included in this document

gathered from reading the OpenSource Organization’s web pages (www.opensource.org
issues and justifications discussed are based on arguments outlined by Frank Hecker in hi
entitled “Setting Up Shop: The Business of Open-Source Software” (http://www.hecker
writings/setting-up-shop.html). The organisational aspects take into account those publish
the GEANT4 project (http://wwwinfo.cern.ch/asd/geant4/geant4.html) and the Mo
Organization (http://www.mozilla.org/). Michael K. Johnson at RedHat added a lot of precisio
an earlier draft and was a source of good advise on open source topics. Paul Kunz pro
information on possible configuration tools for the future. This proposal is only possible bec
of the exceptional work of everyone involved in the ATLAS DAQ Back-end sub-system, pre
and past. Special thanks go to the CERN ATLAS DAQ group leader, Livio Mapelli, for having
courage to make this step.

	A Proposal for Converting the ATLAS DAQ Back-end Sub-system into an Open Source Project
	Bob Jones
	CERN EP/atd
	(Robert.Jones@cern.ch)

