Multi-threaded, discrete event simulation
of distributed computing system

.C. Legrand®? for the MONARC Collaboration

1 california Institute of Technology
2 CERN

Abstract

The LHC experiments have envisaged unprecedented complex computing sys-
tems, for which is necessary to provide a realistic description and modelling of
data access patterns and of many jobs running concurrently on large scale distrib-
uted systems and exchanging very large amounts of data.

A process oriented approach for discrete event simulation is well suited to
describe various activities running concurrently as well the stochastic arrival pat-
terns, specific for such type of simulation. Threaded objects or “Active Objects’
can provide a natural way to map the specific behavior of distributed data pro-
cessing into the simulation program.

The simulation tool developed within MONARC[1] is based on Java™) [2]
technology which provides adequate tools for developing a flexible and distrib-
uted process oriented simulation. Proper graphics tools, and ways to analyze data
interactively, are essential in any simulation project.

The design elements, status and features of the MONARC simulation tool are
presented. The program allows realistic modelling of complex data access pat-
terns by multiple concurrent users in large scale computing systems in a wide
range of possible architectures, from centralized to highly distributed. Compari-
son between queueing theory and realistic client-server measurements are also
presented.

1. Introduction

The aim of this paper is to describe the simulation program, being developed by the
MONARC project, as adesign and optimization tool for large scal e distributed computing
system for future LHC experiments. The goals are to provide arealistic simulation of dis-
tributed computing systems, customized for specific physics data processing and to offer a
flexible and dynamic environment to eval uate the performance of arange of possible data
processing architectures.

An Object Oriented design, which allows an easy and direct mapping of the logical com-
ponents into the ssmulation program and provides the interaction mechanism, offers the
best solution for such a large scale system and also copes with systems which may scale
and change dynamically. A discrete event, process oriented simulation approach, devel-
opedin Javal™) was used for this modelling project. A complex Graphical User Interface
(GUI) to the simulation engine, which allows to dynamically change parameters, load
user’s defined time response functions for different components and to monitor and ana-
lyze simulation results, provides a powerful development tool for evaluating and design-
ing large scale distributed processing systems.

2. Design Consider ations of the simulation program

The simulation and modelling task for MONARC requires the description of complex
data processing programs, running on large scale distributed systems and exchanging very
large amounts of data. A process oriented approach for discrete event ssimulation is well
suited to describe concurrent running programs as well as al the stochastic arrival pat-
terns, characteristic for such type of ssimulations. Threaded objects or “Active Objects”
(having an execution thread, program counter, stack, mutual exclusion mechanism...)
offer much great flexibility in simulating the complex behaviour of distributed data pro-
Cessing programs.

The MONARC simulation tool is built completely with Javal™) technology which pro-
vides adequate tools for developing aflexible and distributed process oriented simulation.
Java has build-in multi-thread support for concurrent processing, which can be used for
simulation purposes by providing a dedicated scheduling mechanism. Java also offers
good support for graphics and it is easy to interface the graphics part with the ssmulation
code. Adequate and flexible graphics tools, and ways to analyze data interactively, are
essential in any simulation project.

Currently, many groups involved in Computer System Simulation are moving towards
Java. As an example, awell known project, Ptolemy 11 [3], is a complete new redesign of
the Ptolemy simulation environment in Java. The reasons for which we decided to write a
new “simulation engine” for process oriented, discrete event simulation were, first, a ded-
icated core for the simulation engine can be more efficient, and second, at the time we
started this project, no such Java based simulation frame was yet available in a sufficient
stable form. However the modular structure of this simulation package does not exclude
the possibility to be interfaced with the engines of other general simulation tools.

3. The components models

Building a general simulation tool requires the abstraction from the real system of all the
components and their time dependent interaction. This logical model has to be equivalent
to the simulated system in all important respects. This simulation frame alows one to
introduce any time dependent response function for the interacting components. Response
functions may also be dependent on the previous states of the component allowing to
describe correctly highly non-linear processes. The major components used in this simu-
lation project are described below.

3.1 Data M odel

It is foreseen that all HEP experiments will use an Object Database Management System
(ODBMS) to handle the large amounts of datain the LHC era. Our datamodel followsthe
Objectivity architecture and the basic object data design used in HEP. The model should
provide arealistic mapping of an ODBMS, and at the same time allow an efficient way to
describe very large database systems with a huge number of objects.

The atomic unit object isthe “Data Container”, which emulates a database file containing
a set of objects of a certain type. In the simulation, data objects are assumed to be stored
in such “data container” filesin a sequential order. In this way the number of objects used
in the simulation to model large number of real objects is dramatically reduced, and the
searching algorithms are simple and fast. Random access patterns, necessary for realistic
modelling of data access, are smulated by creating pseudo-random sequence of indexes.

Clustering factors for certain types of objects, when accessed from different programs, are
simulated using practically the same scheme to generate a vector of intervals.

A Database unit is a collection of containers and performs an efficient search for type and
object index range. The Database server smulation provides the client server mechanism
to access objects from a database. It implements response time functions based on data
parameters (page size, object size, access is from a new container, etc.), and hardware
load (how many other requests are in process at the same time). In this model it is also
assumed that the Database servers control the data transfers from/to mass storage system.
Different policies for storage management may be used in the simulation. Database serv-
ers register with a database catal ogue (Index) used by any client (user program) to address
the proper server for each particular request. A schematic representation of how data
access model isimplemented into the simulation program is presented in Figure 1.

CLIENT <«———————p DataBaseIndex
RegisterA 4 ' |
Database server |\ Figure 1: o
Database server) A schematic diagram of

- data mode! based on

ODBMS architecture
Disk
Array

Data Base

Tape Unit

Data Container
Data Container)
) Data Container
Data Container k : 4 /

This modelling scheme provides an efficient way to handle avery large number of objects
and in the same time an automatic storage management. It allows to emulate different
clustering schemes of the datafor different types of data access patterns, aswell asto sim-
ulate the ordered data access when following the associations between the data objects,
even if the objects reside in databases |ocated in different database servers.

3.2 Multitasking Data Processing M odel

Multitasking operating systems share resources such as CPU, memory and I/O between
concurrently running tasks by scheduling their use for very short time intervals. However,
simulating in detail how the tasks are scheduled in the real systems would be too complex
and time consuming, and thus it is not suitable for our purpose. Our model for multitask-
ing processing is based on an “interrupt” driven mechanism implemented in the simula-
tion engine. An interrupt method implemented in the “Active” object which is the base
class for all running jobs, is a key part for the multitasking model. The way it works is
shown schematically in Figure 2.

When afirst job starts, the time it takes is evaluated and this “Active” object entersinto a
walit state for this amount of time and allows to be interrupted. If a new job starts on the
same hardware it will interrupt the first one. Both will share the same CPU power and the
time to complete for each of them is computed assuming that they share the CPU equally.
Both active jobs will enter into a wait state and are listeners to interrupts. When ajob is
finished it also creates an interrupt to re-distribute the resources for the remaining ones.
This model is in fact assuming that resource sharing is done continuously between any
discrete events in the simulation time (e.g. new job submission, job completion) while on

Figure 2:

11 12
Modelling multitasking

The TR processing based on an
“interrupt” scheme

TASK1
TR
Y -

T1 T2 TF1 TF2

real machines it is done in a discrete way but with a very small time interval. This pro-
vides an accurate and efficient model for multiprocessing tasks.

3.3LAN/WAN Networking M odel

Accurate and efficient simulation of networking part is also a magjor requirement for the
MONARC simulation project. The simulation program should offer the possibility to ssm-
ulate data traffic for different protocols on both LAN and WAN. This has to be done for
very large amounts of data and without precise knowledge of the network topology (asin
the case of long distance connections). It is practically impossible to smulate the net-
working part at a packet level for such large amounts of data user’s defined time depen-
dent functions are used to evaluate the effective bandwidth.

The approach used to simulate the data traffic is again based on an “interrupt” scheme
(Figure 3). When a message transfer starts between two end points in the network, the
time to completion is calculated.

Thisisdone using the minimum speed value of all the componentsin between, which can

Networ k Networ k
LINK{ Max Bandwidth Max Bandwidth) L INK
errent rate Q_L_Jrrent rate

W(t)

A 1] Il B
A Network Netwgr > =l
N

N1

BandwidthAB(t) =F(Protocoal, LA, LB, N1(t) , N2(t) ,W(t))

Figure3: The Networking simulation model

be time dependent, and related with the protocol used. The time to complete is used to
generate a wait statement which allows to be interrupted in the ssimulation. If a new mes-
sage isinitiated during this time an interrupt is generated for the LAN/WAN object. The
speed for each transfer affected by the new one is re-computed, assuming that they are
running in parallel and share the bandwidth with weights depending on the protocol. With
this new speed the time to complete for al the messages affected is re-evaluated and
inserted into the priority queue for future events. This approach requires an estimate of the
data transfer speed for each component. For a long distance connection an “effective
speed” between two points hasto be used. This value can be fully time dependent.

This approach for data transfer can provide an effective and accurate way to describe
many large and small data transfers occurring in parallel on the same network. This model

cannot describe speed variation in the traffic during one transfer if no other transfer starts
or finishes. This is a consequence of the fact that we have only discrete events in time.
However, by using smaller packages for data transfer or artificially generating additional
interrupts for LAN/WAN objects the time interval for which the network speed is consid-
ered constant can be reduced. As before, this model assumes that the data transfer
between time events is done in a continuous way utilizing a certain part of the available
bandwidth.

3.4 Arrival Patterns

A flexible mechanism to define the stochastic process of submitting jobs is necessary.
Thisisdone using the “ dynamic loadable modules” feature in Javawhich provide the sup-
port to include (threaded) objects into running code. These objects are used to describe
the behavior of a“User” or a*“Group of Users’. It should be able to describe both batch
and interactive sessions, and also to use any time dependent distribution describing how
jobs are submitted. An “Activity” object is a base class for all these processes for which
current experience should be used to estimate the time dependent patterns and correla-
tions.

In order to provide a high flexibility in modelling all these activities, the user can provide
very simple sections of Java code, to override the “RUN” method of the “Activity” class.
Any number of such “Activities” can be dynamically loaded via the GUI into the
“Regional Centre” object, smulating the “Users’ using the computing facilities.

3.5 Regional Centre Model

“Regiona Centre” is a complex, composite object containing a number of data servers
and processing nodes, al connected to aLAN (Figure 4).

Mass Storage

Transparent Data Access 38 E

via Data Base Servers DISK

Data Base | ndex

LAN
AMS AMS
. . Transfer
Perform multitask processing FARM i TS WAN job
and sharethe resour ces. :) :))
Active Active Active Active Active Active
job job "% job job **¥ job job "1 Internet
CPU CPU CPU
Regional Centers
. Job
Schedule Jobsto become active Scheduler
e job
Physics Activities
PA PA PA PA

Generating Jobs

Figure4: A schematic view of a Regional Centre object as a composite object

Optionally, it may contain a Mass Storage unit and can be connected to other Regional
Centres. Any regiona centre can instantiate dynamically a set of “Users’ or “Activity”
Objects which are used to generate data processing jobs based on different scenarios.
Inside a Regional Centre different job scheduling policies may used to distribute the jobs
to processing nodes.

With this structure it is now possible to build awide range of computing models, from the
very centralized (with reconstruction and most analyses at CERN) to the distributed sys-
tems, with an almost arbitrary level of complication (CERN and multiple regional centres,
each with different hardware configuration and possibly different sets of data replicated)

4. The Graphical User Interface

An adequate set of GUIs to define different input scenarios, and to analyze the results, are
essential for the simulation tools. The aim in designing these GUIs was to provide asim-
ple but flexible way to define the parameters for simulations and the presentation of
results. In Figure 5 the frames used to define the system configuration are presented.

The number of regional centres considered can be easily changed through the main win-
dow of the simulation program. The “Global Parameters’ menu allows to change the
(mean) values and their statistical distributions for quantities which are common in al
Regional Centres. The hardware cost estimates for the components of the system and can
also be obtained. From the Regional Center frame, which appears when the name of the
centre is selected in the main window, the user may select which parameters to be graphi-
cally presented (CPU usage, memory load, load on the network, efficiency, Database serv-
ersload...). For al these results basic mathematical tools are available to easily compute
integrated values, mean values, integrated mean values.

Parameter Units Distributed

Regional Centers Proc_Time_RAw 1000 |[sia5=] |Fied value
- » ’
cern Global Parameters Proc_Time_ESD 0.25 [S195%s] |Fixed Yalue
| h - - Proc_Time_m0D 25 [S195%s] Meg Exponetial
caltec Estimated Prices fnalyze_Time_TAG 05 [S195%s] Fired Yalue

#inalyze_Time_A0D 1.0 [S195%5]
analyze_Time_ESD 10.0 [S195%5]

Manage sets Smooth sets Analyze sets

Please enter RC name

Acliioa Tlees FALL S [T

Local Network Trafic

‘infn\ | [P
Parameters cpu =
| 0K I Cancel ‘ Parameter [wvalue]| Comments L
DataBase_Servers 12 Nr. of DataBase Ser| 20T [=lcansenie
| Add DataBase_Link_Speed 20 1/0 Bandwidth per Integral:
DataRase_Disk_Size 5000 Disk Space per Dat| 5| ams : 2603
Process_Modes 100 N, of Procassing Mg cpu: 352,50
Cpu_per_Node 50 Prossesing power [| 7 e 3 (0
Finished ! Restart Simulation H Exit ‘ Memery_per_Nede 512 [ME] 5 1@ o
Node_Link_Speed 10 [ME/s] —
h:10 | Max_Runnig_lobs 500 The max nrof sief S| |l]
MassStorage_Size 50 TB
MassStorage_Link_Speed |20 [MB/s] o
DataBase_read_speed 15 [MB/s]
DataBase write sneed & [MB/s] 05 0.6 07 0.8 0.9 10
Init DataBase function InitDataBase_cern Time 5] @
Bandwidth Evaluation Bandwidth_cern Update H Clear H Data H Close
Save || Load " Apply || Print " Set Price || Close | H

Figure5: The GUI Frames used to define the system configuration and monitor output results

5. Presenting and Publishing the Results

To facilitate publishing (storing) the simulation results, as well as all the configuration
files used to generate those results, an automatic procedure to publish results either
locally, or on a Web server, has been devel oped.

This Web Page offers and automatic repository for the Monarc Simulation Program. It
allows to publish the configuration files, java source code and the results (tables and
graphic output) for different simulation runs. The aim of this page is to provide an easy
waly to shareideas and results for developing regional center models. A schematic view of
how this publishing mechanism is implemented is presented in Figure 6. This procedure
to automatically publish configuration files, java sources, graphical resultsis fully imple-
mented in java. When the user decides to “publish” arun, the ssmulation program as acli-
ent triesto find one of several dedicated servers. More than one server is used to make this
service more reliable in case one system is down. The Server implements the Remote
Method Invocation [2] mechanism and provide to each interested client the functionality
to transfer files and automatically to update the content of this Web Page [4].

[=] Statistics @cern (=
[R € 1 Statistics File Edit View Go Communicabor Help ||
Manage sets sSmooth sets " Bookmarks A Location: [attp: /. cern. ch/AONARS /3in_tool/Publish/publish/ /| @7 What's Felatec
Parameter | Value | = = = -
Internet Trafic | Estimated Price [k§] this reja.. | 2,753.70/6,160 < # 3 & 2 &+ & &
Wr. of Jobs Processed 100 Bk Foerd Reload Home Seath Nescape Prit Secury Siop
Nr.of Jobs Aborted o £ mw # Weblisil £ Connections ¢ BizJourmal 2 SmariUpdate 4 Miplace
CPU usage- Integrated mean ... | 63.452
Total CPU used [SI95 %] 3.053 7 1046 g
M DataBase servers write 0.00 [MB] Monarc Simulation Reposito)
0.6
& Davafase seryers read 16.092 IGE] MONATE PRGIECT
’ Processed Ev _
. oo Processing R| Reaianal Centers Regional center |3 pescription
CPU & Memory for cern
Global Read || = Global Parameters models Teatt 5 Yy
Global Write Regional Centers cpu®
Estimated Prices | TestBed cem f—
vod caltech ok, . 0
pdate ek [Global parameters,
Prices &
‘Globsl patametrs
time [5] infn RCs Graph P
ces o0
d H — ‘l &= H Fublish
Add Tables for cern 1] s
%o
rers
‘}«étarl the Simulation H Exit ‘ *
hiom:3 20
)/ o
RMI Server —— o
Writer Object <\-> + Resonstuction o 60 02 04 06 08 10 12 14 16 18
— o BW and DB for cern 5
A lysis Bandwidth e Time Is] x10
‘\ y Eviler InitDasBase_sem
afsinfs filesystem st com
Model2
+ Testhlezhiodell Transter
= T
Web Server voters
Biadell 5
4 i

T P i =) |

=
E— [|5 & oP 2

Figure 6: Publishing the simulation results on a web server

6. Testing and Evaluating the simulation program

A number of tests have been performed to verify and test the simulation program. The full
description of the validation tests for this program are presented in an other paper [6].

A few basic comparisons tests of the simulation program results with queueing theory and
paralel client server data access measurementsin rea systems are presented.

6.1 Queuing Theory
6.1.1M |M |1 Model

This model [5] consists of queueing station where jobs arrive with a negative exponential
inter-arrival time distribution with rate x .

waiting In service

arrivals
—_— —

Furthermore, the job time service requirements are also negative exponentially distributed
withmean E[g] = ﬁ Simplest queueing model M/M/1 theory gives the formulafor mean

number of jobsin the system and mean response time:

=D and - EIS|

EIN] = 12 EIRI = 52
where E[N] is the mean number of jobs in the system, E[R] - mean response time of the
system, E[S] - mean serve time of the system, utilization p = ﬁ and » ismean job arrival

rate, u iSmean job service rate,g[s] = i iSmean service time. This case can be described

in the simulation program as a Database server acting as a queuing station for data
requests coming from clients with the same time distribution. The data size for each
request is also distributed as a negative exponential (Marcovian process).

Results for different input rate shown in the figure 7, for % = 500 , u = 1000, SO p = 0.5,

and mean number of jobsin the system is 1.0, which is equal to the value obtained from
the ssimulation.

Mean number of jobs vs ufilisation

s] Arrival | E[N], E[N] E[R] E[R]
F i rate sim theory sim theory
35 - -
F — theory] 1.0 0.001018 | 0.001001 | 0.001007 | 0.001001
N ® simulation 7
E] 10.0 0.001018 | 0.001010 | 0.010171 | 0.010101
50.0 0.001034 | 0.001053 | 0.052077 | 0.052632

100.0 0.001137 0.001111 | 0.112971 0.111111

200.0 0.001232 0.00125 0.246945 0.25

300.0 0.001538 0.001429 | 0.461039 0.428571

500.0 0.00199 0.0020 1.00087 10

s 700.0 0.003580 | 0.003333 | 2.497969 | 2.333333

Figure7: Smulation results for the M|M|1 model

6.1.2M | M | 1 network queue model
Thistype of queueing model conmi(pfgchain of M | M |1 queues[5].

arrivals

In this case mean total number of jobs in the system and mean total response time of the
network are defined by:

r

r
P r r _
EINI = Y EINI = 3 = and E[Rl = ¥ E[R] = Z_E[S']_
i=1 =17 U ot = d=pn)

where utilization for each stageis p; = % :

Simulating this model can easily be done by creating a sequence of jobs. Thisis similar
with an Analysis job which will sequentially process AOD, ESD and RAW records for
each event. Aswe have different record size for different types of data, we obtain different
service time (or service rate) assuming the speed to read pages from the disk is constant.
But according to Burk’s theorem the departure process from a stable single server M/M/1
gueue with arrival and service rates is a Poisson process. So we can apply the same for-
mula as for M/M/1 case for each stage of process and sum mean number of job and mean
response time in each stage. In the Figure 8, a comparison between the theoretical predic-
tions and the values obtained with the simulation program is presented.

Mean namber of jobs vs utilisation Mean response time vs utilisation
e Qg T
] =]
25 - 1500 |-
. 3000 1
2+ = .
300 - — rtheor

¢ simulation

ol] 00 |

— theory | 1 F
® simciation 1 500 |-

000 —

5 - =

Figure8: Smulation results for the M/M/1 queue model

6.2 Concurrent Database access

Database server and their interaction with clients is a key part which need to be properly
described by the simulation program. Different measurements were done do evaluate

Objectivity’s performance and to understand the basic logical transaction protocol.
parameters for the ssmulation program were tuned using a single client measurements.
The way simulation program describes multiple concurrent clients requesting data from
the same database server is compared with measured values. In Figure 9, results using
Objectivity 5.1 on alocal area network are presented.

-

Measurements\

Simulation

180 m

160 =

140 o

120 o

Mean Time per job [ms]

No. of concurrent jobs

Figure9: Smulation results compared with concurrent client/server measurements on LAN.

A similar setup, but on wide area network (CERN - CNAF) is presented in Figure 10.
e

E

14000 »

3 T
1
—m- Measurements - Simulation -
12000 o . 10
10000 o 04

) 12345 6
vpdate | ctear | vaw |

o Data raffic

[]
Analyze sets

8000 o

Time [s]

6000 o

al Network Trafic

020 s
cpum
018 tape =
018
8 014
m 012
)
) 5 010
5 o008
0.08

No. of concurrent jobs _;;5 12345 6

4000 o

2000 o

Figure 10: Smulation results compared with concurrent client/server measurements on WAN.

A substantial number of such measurements[6] were performed using different datatypes
and network configuration to test and validate this simulation program. For all these test
measurements we obtained a good agreement with the simulation performed to model
them.

10

7. An Example

In three regional centers (symbolically named CERN, CALTECH, INFN) similar physics
analysis jobs are done, but data replication is different asindicated in Figure 11.

CERN

Parameter Yalue

10 Phys cs Nr. of Jobs Processed ;ooo ﬂ| RAW

Mr. of Jobs Aborted
g CPU usage— Integrated mean [%]..| 53.392
Anal ySl S GrOUpS Total CPU used [5195%5] 340,939 * 1046 ESD

DataBase servers write 0.00 [ME]

ﬁﬁﬁ Datafiass servers read TEEE [AOD
Manage sets Smooth sets Analyze sets Processed Events 4.0E7

[l Processing Rate [events/s] E25.825 TAG
. Global Read Rate from DB [MB/s] | 14.212
Local Network Trafic for cern ‘ L %’ 1 .00
| Global write Rate to DB [MB. =
o |[FSlebal Write
ams = Update save | Print ‘ Close
| “ou —| DB Servers Load forcern
50 tape =
Manage sets Smooth sets Analyze sets ZZ|y 1
50 1 w10 CPU & Memory for cern 20|y 1
10 cpum 18 1
] mem =
w40 08 16 [1
i | o8 14 1
30 or al |
s §
o ';‘
20 1 v oo 1.0
04 0.8 1
10 03 o[1
o] vz oal 1
o ozl |
-00 .
0z 04 05 08 10 12 ool I I I |
Time [s] x10° © 2 34 s 8
Time [s] s10* —0 2 4 & =] 10 12
vtwo | cear | vua | s | omme | e v e b semmer inds
=
Manage sots Smooth sats Analyza sats
Internet | rafic forcern
caltach =
20 infn =
18
16
14
CALTECH 1
[}
R
s os
ESD o
5 Physics .
@) 3 INFN
Analysis Groups AOD
vz o4 o0e os L0 12
TAG
Uodate | clear | bata | Close
CPU & Memory for caltech Local Network Trafic for caltech D
e AO
o v e S
TAG
age sets mooth sets nalyze
80 1 ge set: Smooth set Analy
70 110 CPU & Memory for infn
12 1o <pu =
60 e Em O .
W10 2
1 B e Physics
8
40 / or A al
: nalysis Groups
20 6 s
os
20 4
os
10 2 oa
-0 = 02
o B
05 06 07 08 08 1.0 11 12 13 05 06 07 08 08 10 11 12 o %107 Job — Efficiency for infn
Time [s] Time 5] x10° o
R 10f
%107 Job — Efficiency for caltech CPUs Load forcaltech i i8] @
[I = — Update| | Clear | ol
2.2 Write ® 0 —
ok 1 Usage = Local Network Trafic® o7 [
30 B | OB[
Tar] 7 o osf
TE[12 s o4l
3
1al 1 osr
20
1ozt 1 s oz
o % M
b tef 8 4 i
. = ° —aol s
oar 1 3
| . 5 -0 02 04 0.8 08 1.0
e 2 Cpu_time/Total_time
oA 1
8 1
ozf I 1
—0.0| | 1 - -0
—0© 02 o4 o0s o8 10 -00 02 04 0B 0B 10 : S Y P B 5 > "
Cpu_time/Total_time P (it 10 . ot

Figure 11: Schematic view of a distributed data processing simulation job

11

One physics analysis group is assumed to submit 100 jobs per day and is analyzing 4* 10°
events. For 2% of the events ESD records are requested and for 0.5% of the events RAW
data are used. At CERN we assume 10 physics analysis groups, at CALTECH 5, and 2 at
INFN. In each center the activity startsin the morning and more jobs are submitted in the
first part of the day. When a job needs data which are not available locally, the transfer is
done from “CERN”. Typical parameters used to monitor such simulation jobs and how
the resources are used in the system are presented schematically in Figure 11.

8. Summary

A CPU and code-efficient simulation approach to the problem of ssmulation of distributed
computing systems has been devel oped and tested within the MONARC Collaboration. It
provides atransparent way to map the distributed data processing, data transport and anal-
ysis tasks onto the simulation frame, and can describe dynamically even very complex
computing models.

The Java programming environment, used extensively to build the MONARC simulation
tool, is very well suited for developing a flexible and distributed process oriented simula-
tion, equipped with adequate graphical and statistical tools.

This simulation program is still under development to include more sophisticated meth-
ods to optimize the utilization of resources in very large scale distributed computing sys-
tems.

References

1 Monarc simulation program
http://www.cern.ch/MONARC/sim_tool/

2 Sun Microsystems
http://www.sun.con and http://www.javasoft.com

3 PTOLEMY Il Heterogeneous concurrent modeling and design in Java
http://ptolemy.eecs.berkeley.edu

4. Monarc simulation repository
http://www.cern.ch/MONARC/sim_tool/Publish/publish/

5 B. R. Haverkort, Performance of Computer Communication Systems
John Wiley & SonsLtd., ISBN 0-471-97228-2

6 Y.Moritaet a, Validation of the MONARC simulation tools
to be presented at CHEP 2000

12

