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Abstract - In data modelling, product information has
most often been handled separately from process
information. The integration of product and process models
in a unified data model could provide the means by which
information could be shared across an enterprise throughout
the system lifecycle from design through to production.
Recently attempts have been made to integrate these two
separate views of systems through identifying common data
models. This paper relates description-driven systems to
multi-layer architectures and reveals where existing design
patterns facilitate the integration of product and process
models and where patterns are missing or where existing
patterns require enrichment for this integration. It reports on
the construction of a so-called description-driven system
which integrates Product Data Management (PDM) and
Workflow Management (WfM) data models through a
common meta-model. 

I. DESCRIPTION-DRIVEN SYSTEMS 

 ‘Description-driven systems’ can be defined as systems
in which the definition of a domain-specific configuration
is captured in a computer-readable form. This definition
can be interpreted by applications to achieve domain-
specific goals. In a description-driven system definitions
are separated and managed independently from instances.
This allows the definitions to be specified and to evolve
asynchronously from instantiations (and executions) of
those definitions. Description-driven systems require
computer-readable models both for definitions and for
instances. These models are loosely coupled - coupling
takes place when instances are created or when a definition,
corresponding to existing instantiations, is modified. The
coupling is loose since the lifecycle of each instantiation is
independent from the lifecycle of its corresponding
definition.

 One example of the use of description-driven systems is
in a workflow management system (WfM [1]) where the
business process model defines the instantiated workflows
and the definitions are managed separately from the
instantiations. WfM systems are often built on a multi-layer

architecture [14]. In WfM systems the workflow instance
(such as activities or tasks) correspond to the lowest le
of system abstraction - the instance layer (see Figure 1). In
order to instantiate the workflow objects a workflow
scheme is required. This scheme describes the workf
instances and corresponds to the next layer of abstracti
the model layer. In order for the workflow scheme itself to
be built, a further model is required to store the semant
for the generation of the workflow scheme. This model (i
a model describing another model) is the next layer 
system abstraction - the meta-model layer (see Figure 1). 

 The semantics required to adequately mod
application-specific information will, in most cases, b
different. For example, the semantics for describin
Product Data Management (PDM [2]) systems (produ
types, product composition types etc.) will be very differe
from those describing WfM systems (activity types
activity composition types, actor types, etc.). To facilita
integration between (in this case PDM and WfM) met
models a universal type language capable of describing
meta-information is required. The common approach is
define an abstract language which is capable of defin
another language for specifying a particular meta-model
other words meta-meta-information. The accepted
conceptual framework for meta-modelling is based on 
architecture with four layers: Figure 1 illustrates the fo
layer meta-modelling architecture adopted by the OM
based on the ISO 11179 standard.

 The meta-meta-model layer is the layer responsible for
defining a general modelling language for specifying me
models. This top layer is the most abstract and must h
the capability of modelling any meta-model. It comprise
the design artifacts in common to any meta-model. At t
next layer down a (domain specific) meta-model is 
instance of a meta-meta-model. It is the responsibility 
this layer to define a language for specifying models, whi
is itself defined in terms of the meta-meta types of the me
meta modelling layer above. Examples of objects at t
level from manufacturing include workflow proces
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description, nested subprocess description and product
descriptions. A model at layer two is an instance of a meta-
model. The primary responsibility of the model layer is to
define a language that describes a particular information
domain. Example objects for the manufacturing domain
would be product, measurement, production schedule,
composite product. At the lowest level user objects are an
instance of a model and describe a specific information and
application domain.

II. FEATURES OF DESCRIPTION-DRIVEN SYSTEMS

 Description-driven systems features can be realised
through the adoption of a multi-layered architecture.
Description-driven systems are flexible and provide many
powerful features including reusability, complexity
handling, versioning, system evolution and
interoperability. This section examines each of these
features in turn and explains how a multi-layer architecture
facilitates those features.
• Reusability. It is a natural consequence of separating

definition from instantiation in a system that reusability
is promoted. Each definition can be instantiated many
times and reused for multiple applications. For exam-
ple, a single activity definition can be captured in a
workflow management system and can be used for
many workflow process specifications.

• Complexity handling (scalability). As systems grow in
complexity it becomes increasingly necessary to cap-
ture descriptions of system elements rather than captur-
ing detail associated with each individual instantiation
of an element. Scalability can be eased if descriptive
information is held both at the model and meta-model
layers of a multi-layer architecture and if information is
captured about the mechanism for the instantiation of
objects at a particular layer. In a multi-layer architec-

ture there are fewer data and types to manage at e
layer but more semantics is needed to cater for syst
complexity and flexibility. These semantics are pro
vided at the next higher (or descriptive) layer o
abstraction. As an example of complexity handlin
consider the difference between describing the deta
of every single car of a given model produced by
company and describing the generic details of a mo
type. Each single instance of a car is derived from
given model type - description should be handled at t
type level and details, such as the chassis number, s
ified only when required for a specific car instance.

• Version handling. It is natural for systems to chang
over time - new elements are specified, existing e
ments are amended and some are deleted. Elem
descriptions can also be subject to change over tim
Separating description from instantiation allows ne
versions of elements (or element descriptions) to coe
ist with older versions that have been previously insta
tiated. For example, car models change over time a
their production processes may need to be revisited a
consequence. Cars of different model versions must
handled over time and coexist with other cars of diffe
ing model versions. Separating details of model typ
from details of single cars allows the model type ve
sions to take place asynchronously with the producti
of single cars.

• System evolution. When descriptions move from one
version to the next the underlying system should ca
with this evolution. However, existing production man
agement systems, as used in industry, cannot cater
this. In the car example, it is not possible for a sing
production line to evolve while production is taking
place. Rather the production line is flushed of cars fo
lowing a particular model version before the produ

 Fig 1. A 4-layer meta-modelling architecture
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tion line is changed to reflect the requirements of the
new model version. Production is therefore not contin-
uous in nature and design changes take time to be
rolled forward into production. In capturing description
separate from instantiation, using a multi-layer archi-
tecture, it is possible for system evolution to be catered
for while production is underway and therefore to pro-
vide continuity in the production process and for design
changes to be reflected quickly into production.

• Interoperability. A fundamental requirement in making
two distributed systems interoperate is that their soft-
ware components can communicate and exchange data.
In order to interoperate and to adapt to reconfigurations
and versions, large scale systems should become ‘self
describing’. It is desirable for systems to be able to
retain knowledge about their dynamic structure and for
this knowledge to be available to the rest of the distrib-
uted infrastructure through the way that the system is
plugged together. This is absolutely critical and neces-
sary for the next generation of distributed systems to be
able to cope with size and complexity explosions. A
stronger aspect of interoperability is that distributed
systems and components to be integrated should have
common ways of handling and dealing with system
objects such as events, security, systems management,
transactions and faults. Software components must be
able to plug into these common distributed services and
facilities. 

III. I MPLEMENTING DESCRIPTION-DRIVEN SYSTEMS 

 Object-oriented systems provide the mechanisms for
the capture of system description at a high level of
abstraction - descriptive objects themselves have state and
methods - and are therefore suitable for building
description-driven systems. When implementing a
description-driven system based on objects, the descriptive
element, which holds information about another object is
called a ‘meta-object’ - meta-objects manage the meta-data
required to implement description-driven systems. The
‘meta-’ prefix is used in the same manner, as it was used for
meta-models, i.e. it describes the connection between
objects of different layers of abstraction in description-
driven systems. Note also that the usage of the term meta-
object denotes that the system not only ‘stores’ the
descriptive information but also manages it (i.e. it has data,
methods and state).The following sections investigate the
design patterns required to integrate process and product
model based on a multi-layered architecture.

A.    Patterns

 Some design patterns appropriate for handling meta-
data in a multi-layer architecture e.g. the Composite and
Iterator [3] patterns, have been well-specified. Gamma

defines the Composite pattern in the following wa
“Compose objects into tree structures to represent p
whole hierarchies. Composite lets clients treat individu
objects and compositions of objects uniformly”. Accordin
to Gamma, the Iterator pattern “provides a way to acce
the elements of an aggregate object sequentially with
exposing its underlying representation”. These patterns 
studied later in this paper.

 Blaha and Premerlani [4], have extended the OM
notation to help specify patterns. A number of patterns ha
been added to the OMT language to provide “a higher le
of building blocks for models than the base primitives 
class, association and generalisation”. They also introd
cyclicity into the composite pattern. Of particular interest 
the subject of this paper are the Graph, Item Descript
and Homomorphism patterns of [4]. The next sections ta
patterns described in [4] and enrich these patterns
provide integration of process and product (meta-)mode

B.    Item Description Pattern

 Coad’s [5] Item Description pattern shows th
association between descriptions and instances. In princ
this pattern is the manifestation of the relationship betwe
meta-objects and objects. This pattern describ
consecutive layers of description-driven systems. T
association between Items and Item Descriptions can be
aggregate and support link attributes and qualifiers. In 
car example of Section II, individual cars (of a particula
model) are Items which are built according to a single c
model description. In other words, the association betwe
car and model holds sufficient semantics for a particu
instance of a car to be built according to a model definitio
This mechanism is essential to the separation 
instantiation from definition, as required by the multi-laye
architecture of description-driven systems where seman
are required for the instantiation of Items from a Ite
Descriptions. 

C.    Homomorphism Pattern

 Figure 2 also shows the Homomorphism patte
expounded in [6]. This figure shows that two Item
Descriptions are themselves related and an association
be defined between them. As a consequence of the I
Description pattern and the fact that semantics have b
added to the association between Item Descriptions, th
will necessarily be semantics attached to the associatio
one (instantiated) Item to another (instantiated) Item.

 According to [6] “Homomorphisms are most likely to
occur for complex applications that deal with meta-data
Since there are relationships between elements in e
layer (e.g. a relationship between Item Descriptions) it
natural that the Homomorphism pattern appears betw
layers. The Homomorphism pattern is therefo
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fundamental to description-driven systems.
 As an example of the use of this pattern, consider two

Item Descriptions: the familiar car and car model and a
production process and production process model. In this
example, there are many instantiations of cars of a
particular model and production activities of a particular
process model. An association can be specified between a
car model and a production process model - i.e. information
specific to the execution of a production process model on
a specific car model. When an instantiation of the
production process is performed on a particular car, details
such as the operational conditions must be specified. These
operational conditions may be derived from the information
on the association between car model and production
process model. That is, the semantics of the association
between the instantiated Items can be derived from the
semantics on the association between the corresponding
Item Descriptions.

D.    Version Pattern

 In description-driven systems it is important to keep

track of versions of definitions and instantiations of these
definitions. Figure 3 proposes a Version pattern that can
facilitate individual and collective versioning. This pattern
provides the functionality of both the CheckIn/CheckOut
Model and Composition Models of configuration
management (see [7]). In this pattern each VersionedObject
manages a set of individual versions of itself, each instance
having a versionId and being referred to as a
VersionedObjectProperty. Note that, in principle, a
VersionedObject and a VersionedObjectProperty make up
one object. Properties are separated from attributes in order
to distinguish between meta-object data which is either
versioned or not versioned respectively. Changing an
object’s attributes does not version the object where
changing an object’s properties will version it. In additio
to handling versioning of an individual object, this patte
allows for versioning of a collected set of objects, called
Release. This is achieved by defining a class of obje
called ReleaseManagers which are specialisations 
VersionedObjects. ReleaseManagers are versioned 
each version, the ReleaseManagerProperty class, man

 Fig 2. Item Description and Homomorphism pattern
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 Fig 3. Version pattern
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a collection of versioned objects.
 The ReleaseManager maintains a list of added or

removed objects in a release. Static versioning is therefore
handled by this pattern. The propagation of changes in a
release to dependent objects (i.e the notification of changes
to dependent objects and the nature of the dependencies) is
described in the following section.

E.    Publisher/Subscriber Pattern

 To facilitate dynamic version management, which
cannot be handled by the Version pattern alone, use can be
made of Gamma et al’s Observer pattern [3], otherwise
referred to as the Publish/Subscribe pattern. Figure 4 shows
this pattern. In this pattern a publisher Item (or meta-object)
sends out notifications which will reach all subscriber Items
without the Publisher knowing who the Subscribers are and
how many Subscribers there are. In UML [8] this can be
represented by a directed association as shown by the arrow
between Publisher and Subscriber in Figure 4. This pattern
is useful in handling versions of meta-objects when there
are dependencies between the meta-objects but the meta-
objects are not tightly coupled.

F.    Graph Pattern

 The general form of a graph is shown in Figure 5 where
nodes are linked to other nodes. In an undirected graph an
edge connects any two nodes, whereas in a directed graph
an edge connects a source node to a sink node. In addition,

a directed graph can have nodes with any number of ed
Complex graphs make a distinction between branch a
leaf nodes, whereas simple graphs do not. The exam
quoted by [4] to describe complex directed graphs is tha
the Unix file structure: files are either data files or directo
files and a directory file contains named files which a
identified by a filename that is unique in the context of
directory file. In the Unix file system a file can belong t
multiple directories via symbolic links and a file may hav
a different name in each directory where it is reference
this means the structure is a graph. All files have a par
directory except the root file as shown in Figure 6 (fro
[4]). The graph is complex since distinction is draw
between datafiles and directory files - datafiles being le
nodes and directory files being branch nodes.

 In an acyclic graph, when the graph has been traver
repetitively from parent to child nodes, there are n
instances where traversal leads to a node being a child
itself. Cyclic graphs can allow this form of recursion
Therefore the complex directed graph of the Unix fi
system example is acyclic in nature, since a directory 
cannot contain a reference to itself at any level. T
complex Directed Acyclic Graph pattern of [4] does n
allow semantics to be added to the association betw
nodes as branches (see Figure 5), consequently there i
way of identifying, and associating attributes or methods 
a particular instance of the link. 

 

 Fig 4. Publisher/Subscriber pattern
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IV. PROVIDING DESCRIPTION-DRIVEN SYSTEM FEATURES 
USING META-OBJECTS

A.    Handling Complexity

 In Section II, it was stated that scalability can be eased,
if descriptive information is held both at the model and
meta-model layers of a multi-layer architecture. The Item
Description pattern combined with the Directed Acyclic
Graph pattern provides the mechanism by which this can be
achieved. 

 Figure 7 shows a combination of the Item Description
and Directed Acyclic Graph patterns. The combination of
the patterns is established by decomposing an Item
Description into its constituent Item Descriptions. In other
words, an Item Description can be either elementary or
composite in nature and therefore some Item Descriptions
can be made up of other Item Descriptions. Consider the car
and car model example of earlier. A particular description
of a car model is composed of other descriptions: e.g
descriptions of the engine, the chassis, the drive-system
(front-axle system, rear-axle system, wheels, tyres etc.).
Some of these descriptions are elementary e.g wheels and
some composite e.g drive-system. The association between
a Composite Item Description and its children will hold
semantics such as the number of constituent descriptions of
a common type (e.g 4 wheels of 1 wheel description).
However, as stated earlier, a simple combination of the
Item Description and Directed Acyclic Graph patterns as

described in [4] does not enable the identification of a
particular constituent Item Description within its
Composite Item Description. In the example, it is not
possible to determine which wheel is located at which
wheel position.

 Consequently the combined patterns require enrichment
by the introduction of another meta-object which captures
the membership of an Item Description within its
Composite Item Description(s). Figure 8 shows the
Enriched Directed Acyclic Graph and Item Description
combined pattern. An Item Description can be part of many
different Composite Item Descriptions e.g. one wheel
description could be employed in both the front-axle
system and the rear-axle system. One instance of the
Composite Member meta-object will hold the full
semantics of the membership of a particular Item
Description in a single Composite Item Description. In
other words, it is possible to determine which wheel is
located in which axle system and in which location in that
axle system.

 When a particular Item Description is instantiated into
an Item the composition of that Item is determined by
traversing the graph of its Item Description. The result will
be a hierarchy of Items organised as a tree in which each
node is of a particular Item Description. In the car example
the car is made up of a chassis, an engine, a drive-system
(comprising front- and rear-axle systems each of which is
composed of 2 wheels etc.). The tree is as deep as there are

 Fig 6. File directory as an example Graph pattern
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 Fig 7. Combination of the Item Description and Directed Acyclic Graph patterns
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layers in the directed acyclic graph and each composite
node will have a number of constituent nodes equal to the
number of Composite Member meta-objects in the Item
Description corresponding to that node (see Figure 9). 

 The complexity of the overall model of Items is
therefore handled through the reuse of Item Descriptions.
The reuse can take place at any point in the traversal of the
directed graph as long as the graph is acyclic. For the car
example, the number of Items and the number of levels of
compositeness is not great and complexity handling is not a
major issue. As either the complexity of the Item and the
number of levels of composition increases the role of
Composite Member meta-objects becomes essential. The
Enriched Directed Acyclic Graph and Item Description
patterns have been used to manage the complexity inherent
in the construction of a large scientific apparatus, as
described in Section V of this paper.

B.    Integrating Product & Process Models

 Having discussed the role of a directed acyclic graph to
describe Items and their constituents in the previous

section, it is now proposed that any product or any process
can be modelled in terms of an Enriched Directed Acyclic
Graph pattern combined with an Item Description pattern.

 In manufacturing, models are used to support the design
life cycle of a particular product [9]. Products can evolve
over time, their designs may change or the production
process may be improved. Earlier it was stated that PDM
systems have been employed to manage product data in the
design life cycle. PDM systems traditionally employ
hierarchies to capture product composition (so-called ‘B
Of Materials’, BOM) and therefore, as the complexity o
the product grows PDM systems suffer from a produc
explosion. Basing a PDM model on an Enriched Direct
Acyclic Graph pattern combined with an Item Descriptio
pattern, handles the products explosion. The consequen
that the BOM is only available once the produ
composition tree has been generated by traversal of 
complete graph structure (as shown in Figure 9).

 Products are subject to many processes in 
manufacturing life cycle such as design process
assembly processes, test processes, maintenance proc

 Fig 8. Enriched Directed Acyclic Graph pattern
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etc. Each of these processes can be complex and composite
in nature. Ideally the description of these processes should
be captured in a model and instances of these processes
managed in some repository. One example of a process
management system is a WfM, which, as stated earlier, can
be described as description-driven systems. Process models
to support systems such as WfMs must cope with process
composition, process sequence, parallelism of processes
and synchronisation of processes. Basing a WfM model on
an Enriched Directed Acyclic Graph patterns combined
with an Item Description pattern supports processes of
arbitrary complexity including composition and sub-
process reuse. Furthermore, using the CompositeMember
meta-objects of the Enriched Directed Acyclic Graph
pattern allows the capture of process sequence, parallelism
and synchronisation.

 There is an increasing movement in manufacturing to
integrate product and process models for the purposes of
life cycle data management. Therefore any system which
can manage both product and process information in a
common model is very desirable to the manufacturing
community. Basing both a product and a process model on
the above patterns and associating product descriptions
with process descriptions, provides a uniform model for
manufacturing. The association between the two
descriptions carries semantics in that it describes how a
particular process description is applied to a particular
product description and any conditions or constraints on
how the process acts on the product. This association of
process description to product description is very powerful
- it allows different associations to be defined between a
product and different processes that can take place
throughout its life cycle e.g. design, assembly, testing,
maintenance etc. For example, the association of a
maintenance process to a product will require quite
different conditions to be captured from those that are
captured when a design process is carried out on that same
product. The integration of PDM with WfM demonstrates
the power of a unified product and process life cycle model.

C.    Handling Evolution

 Production systems should cater for the evolution of
product or process descriptions regardless of the current
state of the production and even while the production
continues. Since, as discussed earlier, layers in a
description-driven system are only loosely coupled,
modifications in the meta-model layer can be carried out
asynchronously from the application of those modifications
in the model layer (which is itself defined in and generated
from the meta-model layer). Similarly, modifications in the
model layer can be asynchronously applied from their
instantiations in the instance layer. 

 Even though the modifications are asynchronously

applied in each layer, notification of the modification is
required to provide traceability in the production systems.
This mechanism can be handled through a combination of
the Publish/Subscribe pattern, described in Section E, the
Item Description pattern of Section B and the Version
pattern of Section D. In the combination of these patterns,
an Item Description is a concrete Publisher and any Item
associated with this Item Description is a concrete
Subscriber. A modification in the Item Description (at the
model layer) is then notified to its Subscribers (at the
instance layer) which can apply their modifications when
appropriate. 

 The application of the Subscribers’ modification
follows the Homomorphism pattern, described 
Section C. The Homomorphism pattern provides linka
between versions of Items and Item Description
Consequently an Item can determine the consequence
itself of moving to a new version of an instantiation of i
Item Description.

D.    Meta-Objects and Standardisation

 In distributed object-based systems, object requ
brokers provide for the exchange of simple data types a
in addition, provide location and access services. T
CORBA standard is meant to standardise how syste
interoperate. OMG’s CORBA Services [10] specify ho
distributed objects should participate and provide servic
such as naming, persistent storage, life cycle, transact
relationship and query. The CORBA Services standard
an example of how self describing software componen
can interact to provide interoperable systems.

 Recently a considerable amount of interest has be
generated in meta-models and meta-object descript
languages. Work has been completed within the OMG 
the Meta Object Facility [11] which is expected to mana
all kinds of meta-models relevant to the OMG Architectur
The purpose of the OMG MOF is to provide a set 
CORBA interfaces that can be used to define a
manipulate a set of interoperable meta models. The M
uses CORBA interfaces for creating, deleting
manipulating meta objects and for exchanging me
models.This meta-modelling approach will facilitat
further integration between product data management 
workflow management thereby providing consistenc
between design and production and speeding up the pro
of implementing design changes in a production syste
The MOF provides the mechanisms required to bri
together OMG work on Product Data Enables [12] and t
Workflow Management Facility [13], [14].

 The usage of the MOF will depend very much o
viewpoint. From a systems designers viewpoint, who w
be looking down the layers of a multi-layer architecture, t
MOF is used to define an information model for a particul
 



 

domain of interest. Another viewpoint is that of a systems
programmer who is looking up the multi-layer architecture.
CORBA clients use the MOF to obtain information model
descriptions which support reflection and interoperability. 

V. THE CRISTAL PROJECT

 A prototype has been developed which has facilitated a
study of description-driven systems. The objective of this
prototype was to integrate a Product Data Management
(PDM) model with a Workflow Management (WfM) model
in the context of the CRISTAL (Cooperating Repositories
and Information System for Tracking Assembly
Lifecycles) project currently being undertaken at CERN,
the European Centre for Particle Physics in Geneva,
Switzerland. 

 The Compact Muon Solenoid (CMS) experiment [15]
currently being constructed at the European Centre for
Particle Physics at CERN will comprise several complex
detectors for fundamental particle physics research. Each
detector is being constructed out of, potentially, over a
million parts and will be produced and assembled during
the next decade by specialised centres distributed world-
wide (see Figure 10). Each constituent part of each detector
must be accurately measured and tested locally prior to its
ultimate assembly at CERN. The CRISTAL system [16],
[17] is being developed to control the production and
assembly process of the CMS Electromagnetic Calorimeter

(ECAL) detector. It employs workflow (WfMS) and
product data management (PDM) techniques to provide an
infrastructure in which the engineering data can be
warehoused. 

 A distributed object-oriented database (Objectivity) is
used to hold both the engineering data and the definitions of
the detector components and of the tasks which are
performed on the components. The ECAL construction
database follows an object-oriented design to maximise
flexibility and reusability. An approach has been taken,
which promotes self-description and a degree of data
independence. In adopting such a description-driven design
approach, a separation of object instances from object
descriptions instances was needed. This abstraction
resulted in the delivery of a meta-model as well as a model
for CRISTAL. 

 A CRISTAL system comprises one or more distributed
data gathering centres (Figure 10), each of which is
federated into the system. These centres are a single Central
System and multiple Local Centres in which the CRISTAL
software will run. Each Local Centre will have a set of
measurement Instruments defined in the database in terms
of the commands that each instrument uses and the data
formats expected as outcomes from the execution of
workflow activities by instruments [17]. 

 Figure 11 shows the software architecture of a Local
Centre. The software comprises a set of Instrument Agents,
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 Fig 10. The CRISTAL Multi-Centre architecture
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a set of Product Managers for handling all part data to/from
the database, a Local Centre Manager which supervises the
data gathering in a centre, a set of Digital Control Panels
(DCPs) which handle user interaction with CRISTAL and a
Data Duplication Manager (DDM) which handles all
duplication of data between the Local Centre and the
Central System. 

 Product Managers (PM) provide the mechanism by
which products (or detector parts) are tracked through
workflows. They manage concurrency of workflow activity
executions, they manage data storage and carry out all
book-keeping of events. Any significant occurrence that
happens to a product in a workflow is recorded by its PM
which effectively keeps track of the ‘state’ of the product in
production. As the PM handles all database activity for
specific products, the DCPs are protected from any changes
occurring in the database schema. As a consequence, the
PM lies at the heart of the CRISTAL system and controls
access to versions of product and process data. 

 The PM uses the present state of products and workflow
activities with the prevailing production conditions to
determine the next step that a product takes in its workflow.
In effect the Product Manager acts like a mediator (as
defined in the Mediator pattern of [3]) liaising with both
workflow activity and product objects, which, themselves,
have no knowledge about each other’s state. By using the
Mediator pattern, workflow activity objects are decoupled
from product objects thereby allowing interaction with
these objects to be handled separately through a single
object. By so doing the protocol for interaction with both
workflow activity and product objects is simplified and
only implemented through the mediator object.

 In practice, this means that the product (PDM) and
process (WfM) information can be managed separately but

can be combined by the Mediator process. Product a
process data are stored as database objects, managed 
PM. All events associated with these product and proc
objects are also stored in chronological order as datab
objects. The PM interrogates the database for product 
process ‘state’ information and combines this with th
production conditions to determine the next viab
workflow activities that can be performed on the produ
under consideration. 

 Not only does the PM manage static product a
process information, it also handles evolving product a
process information. When a new release of the prod
specification becomes available at a centre, the PM w
compute when and how the change can be applied. Chan
can be of different types (e.g product, workflow activity
data format) and as a mediator the PM will forward th
handling of the change to the appropriate database obj
As a consequence of its role in determining when a cha
can be applied, it is possible for products of the sam
definition to be following quite different versions of the
production scheme at any one time in a centre. 

 It is the responsibility of each products’s PM to kee
track of the product in its workflow. Products can mov
between centres, so PMs in both the source and destina
centres must be able to follow the same workflow i.e 
suspend and resume workflow activities when products 
shipped between centres. The Product Manager has b
implemented as a CORBA object using the CORB
lifecycle service. In its role as manager of the Local Cen
the LCM manages the life cycle of each PM instanc
including when a product is physically transported fro
one centre to another (‘shipped’).

 Figure 12 shows an enriched Homomorphism patte
replacing the condition element of Figure 2 by a mediat
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 Fig 11. Local Centre software architecture
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class. The PM carries out the physical role of mediation in
the CRISTAL prototype. This enriched pattern describes
both the relationship between the meta-model and model
layers of CRISTAL, through the familiar Item Description
pattern and the role of the PM as the mediator between
Items of the model layer (in this case between products and
workflow activities).

VI.  CONCLUSIONS

 The following existing patterns emerged from the
CRISTAL data model: Item Description, Publish/
Subscribe, Homomorphism, Graph, Tree and Mediator.
These patterns were shown to be insufficient to provide the
flexibility required in the CRISTAL data model. However,
with enrichment of the Graph, Tree and Homomorphism
patterns and the addition of a new Version pattern it has
been possible to provide the functionality required to

integrate PDM with WfM, using a description-driven
approach. 

 Figure 13 summarises the inter-relationship between
the set of patterns identified for the integration of PDM
systems and WFM systems in the CRISTAL data model. It
shows a Versioned Graph Pattern which has been derived
from the Version, Complex Graph and Publish/Subscribe
patterns. It also shows an Enriched Homomorphism pattern
which has been derived from the Item Description and
Mediator patterns. Furthermore the diagram brings together
the Complex Tree pattern with the Versioned Graph pattern
from which it is derived. Instantiation of the Complex Tree
pattern from the Versioned Graph pattern is performed by
the Product Manager which consequently carries out the
integration of the PDM and WfM aspects and acts as the
CRISTAL execution component. 

 Blaha and Premerlani [4] state that “patterns provide
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 Fig 12. Enriched Homomorphism pattern
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 Fig 13. CRISTAL pattern summary
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higher level of building blocks for models than the base
primitives of class, association and generalization”. This
work has shown that this assertion is not only true for
models but can be extended to include meta-models. 

 The concept of using meta-data to reduce complexity
and aid navigability of data resident in a database is well
known. Also its use in minimising the effect of schema
evolution in object databases has been stated many times
elsewhere. In the CRISTAL project meta-data are used for
these purposes and, in addition, meta-models are used to
provide self-description for data and to provide the
mechanisms necessary for developing a query facility to
navigate multiple data models. 

 Foote and Yoder [18] have applied the concepts of
pattern representations to the domain of data description.
They conclude that candidate patterns are required to
describe meta-data structures and their inter-relationships.
Design patterns are thus needed in object-oriented design to
describe meta-schemae such as CRISTAL meta-objects. 

 The meta-model approach to design reduces system
complexity, provides model flexibility and can integrate
multiple, potentially heterogeneous, databases into the
enterprise-wide data warehouse. A first prototype for
CRISTAL based on CORBA, Java and Objectivity
technologies has been deployed in the autumn of 1998 [19].
The second phase of research will culminate in the delivery
of a production system in 1999 supporting meta-model
queries and the definition, capture and extraction of data
according to physicist-defined viewpoints.
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