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Abstract

We address the problem of estimating the parameters of very close or overlapping tracks.
In order to achieve optimal performance the estimation process has to be carried out con-
currently with the task of assigning the observations to the track candidates. We present a
new method based on the Deterministic Annealing Filter (DAF) which implements a global
competition. The method is studied on simulated tracks in the ATLAS Transition Radiation
Tracker, in which there is a large background of mirror hits in addition to the genuine obser-
vations. We show that the new method is superior to a sequential application of the DAF to
the track candidates, and also superior to a simple competition either between hits or between
tracks. An even better performance can be achieved if prior knowledge about the relation
between hits and their mirror hits is taken into account.
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1 Introduction

Track reconstruction in the LHC detectors will be faced by the problem of finding and fitting
high-momentum tracks in the presence of a large background of noise, backscattering, and low-
momentum tracks. In some cases the problem is aggravated by the presence of mirror hits, for
example in the Transition Radiation Tracker (TRT) of the ATLAS detector [1]. It has been shown
previously [2] that for tracks which are isolated fairly well an iterated non-linear filter with an-
nealing (the DAF) is a powerful tool for estimating the track parameters concurrently with solving
the assignment problem, i.e. deciding which hits are “signal” and which are “noise”.

The assignment problem is even more difficult if there are several tracks close to each other,
again on a high background. In this case it is conceivable that a global decision rule performs
better than pure competition between hits or pure competition between tracks. In the following we
present such a global competition scheme and show that it performs according to this expectation.
It is hardly surprising that using additional information on which hits are mirror images of each
other results in a further improvement of the performance of the decision rule.

2 Multi-track filters

Suppose that in a given layer k of the detector there are m, track candidates (templates) and ny,
hits which are compatible with the candidates. In order to keep the notation as simple as possible
we keep k fixed and drop the subscript k&, so that we have m templates and r» hits. We can describe
the state (position, direction, curvature) of template j by a state vector «; and the observed values
of hit7 by an observation vector y,. A state and an observation which belong to the same track are
coupled by the measurement equation

y=Hx+ ¢,



where ¢ is the observation error, which is assumed to be normal with zero mean and covariance
matrix V.

As a preparation for computing the assignment probability p;; between hit 7 and template j
we set up the following matrix &:

(®)ij = wi; = @(y;; Hzj, V),

where ¢(-; 1, V') isthe multivariate normal probability density with mean vector p and covariance
matrix V. We now define four methods for computing the assignment probabilities.

Method 1: Competition between hits. There is competition between all hits for each track,
but there is no competition between the tracks. This procedure is equivalent to the DAF [2].
The assignment probabilities are computed by dividing ¢;; by its associated column sum plus a
constant (normalization by columns):
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Method 2: Competition between tracks. There is competition between all tracks for each
hit, but there is no competition between the hits. It is equivalent to the original Elastic Arms
algorithm [3]. The assignment probabilities are computed by dividing ¢; by its associated row
sum plus a constant (normalization by rows):
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Method 3: Global competition. There is competition between all entries which are incompati-
ble. This method is proposed here for the first time. The assignment probabilities are computed by
dividing ;; by the sum of all elements in the same row and column plus a constant (normalization
by columns and rows):
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Method 4: Competition between tracks and between mirror hits. This is a refinement of
Methods 2 by adding competition between a hit and its mirror hit. It is based on Lindstroms
algorithm [4]. The assignment probabilities are computed separately for each of pair of hit and
mirror hit. If (¢1, ¢2) is such a pair, the assignment probabilities are computed according to
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The normalization constant is therefore the sum of all elements in the respective submatrix plus a
constant. If for some reason a hit has no mirror hit it is treated according to method 2. In a detector
without mirror hits methods 2 and 4 coincide.

The constant ¢ effectively defines a cut beyond which the assignment probability quickly
drops to 0. All observations with non-zero assignment probability are combined to a single obser-
vation by a weighted mean, the weights being proportional to the respective assignment probabil-
ities. This combined observation is then used in the updating step of the filter. The filter is iterated
until the assignment probabilities settle to their final values. In order to avoid suboptimal solutions
(local minima) the iteration is carried out with annealing, similar to the Determistic Annealing
Filter described in [2].



3 Simulation experimentsin the ATLASTRT

We now present results from simulation experiments with tracks in the ATLAS Inner Detector
Transition Radiation Tracker (TRT). As the TRT is made of drift tubes each hit has a corresponding
mirror hit. For details of the detector the reader is invited to consult the design report [1].

We have simulated a sample of 980 pairs of tracks all coming from the origin, giving 1960
tracks in total. A pair is simulated by first assigning to both tracks the same transverse momentum
vector p, the magnitude of this vector being larger than or equal to 1 GeV/c. Each component of
the momentum vector is then given a random perturbation of in the order of 1 % of its magnitude.
This is done independently for both tracks. The outcome of this procedure gives everything from
completely separated tracks to completely overlapping tracks.

Our multi-track algorithms require an initial guess of the parameters of the tracks in the pair,
and we have in this work tested out two different initialization procedures. The first one is simply
to initialize the track parameters by their true values. The second one makes a least-squares fit in
the R®-projection to all points in the track pair. This yields the “centre of gravity”-track (cog).
The two initial tracks are the cog-track plus/minus one standard deviation of the track parameters.
This procedure is called the “cog+/—" initialization.

The annealing schedule has to be chosen very carefully, in order to prevent the two templates
from coming too close during the annealing, as they will have a tendency to remain close during
the rest of the annealing process. Therefore the starting temperature cannot be too high, and the
annealing cannot be too slow. We also have observed that the convergence of the algorithms at
the final temperature is slower when treating multiple tracks. The number of iterations at the final
temperature has therefore been increased to 15.

We now compare the results of the four different methods presented above. The precision
of the estimates will be assessed by the generalized variance V' of the residuals of the estimated
track parameters with respect to the truth values. We first make an evaluation of the algorithms
with the mirror hits turned off (Table I). The generalized variances are given relative to a single-
track fit with correct assignment. All multi-track algorithms are initialized with the true parameter
values. Methods 2 and 4 are the best and give equivalent results, as expected. Method 3 behaves
slightly worse than methods 2 and 4. Obviously the power of the general competition really arises
in situations where there are noise hits in addition to track hits in a layer.

We now study the methods with the mirror hits turned on plus some variable amount of
noise. Table Il(a) shows the generalized variances of the different algorithms as a function of the
noise level, relative to the above mentioned single-track fit. The templates have been initialized
to the true track parameters. Again, method 1 is consistently the least precise of all. Method 2 is
now also significantly less precise than methods 3 and 4. This is due to the lack of competition
between the different hits in a layer. Methods 3 and 4 are comparable but, nevertheless, not totally
equivalent in behaviour. At low noise levels, where mirror hits are the dominant source of noise,
method 4 is the best. However, method 3 is the best at higher noise levels, as it has been specifically
designed to cope with the problem of the presence of noise hits in addition to track hits.

Table 11(b) shows results which are analogous to the ones from Table 11(a), but now the
cog+/— method has been used for the initialization. Method 1 is again the worst, followed by
method 2. Method 3 now consistently exhibits a larger spread of the track parameters than method

Method 1 2 3 4
Viel 250 | 1.94 | 253 | 1.94

Table I: The relative generalized variance of the four methods.



4. This means that method 3 for our jet sample obviously has a tendency to fall into a local
minimum of the energy function more often than method 4. However, by using a more robust
measure of the spread — the product M of the medians of the squared track parameter residuals —
it is possible to obtain a picture similar to the one using the truth initialization. In Table 111 we show
ratios of quantity A (method 4 divided by method 3) as a function of the noise level. The median
products are comparable. Moreover, the qualitative feature of method 3 increasing its relative
precision with increasing noise level is now apparent also with the cog+/— initialization when
invoking the robust quantities. Nevertheless, method 3 obviously strongly depends on starting up
from reasonably good initial tracks in order to achieve its optimal performance.

Noise Method Noise Method
level 1 2 3 4 level 1 2 3 4
0 281 | 36.2 | 4.52 | 2.84 0 7.50E5 | 1.84E3 | 72.1 | 11.9
10% | 270 | 58.7 | 5.35 | 4.35 10% | 7.53E5 | 2.70E3 | 102 | 21.9
20% | 388 | 101 | 6.26 | 7.06 20% | 9.68E5 | 3.53E3 | 314 | 40.5
30% | 358 | 185 | 7.19 | 9.51 30% | 9.80E5 | 3.73E3 | 249 | 43.3
(a) (b)

Table II: The relative generalized variance with mirror hits and noise for four different algorithms. The algo-
rithms have been initialized by the true parameter values (a) and by the cog+/— method (b), respectively.

Initialization Noise level
method 0 10% | 20% | 30 %
true 095 | 1.12 | 1.26 | 1.22
cog+/— 0.85 | 096 | 1.04 | 1.01

Table Ill: Ratio of median products M (method 4 divided by method 3) as a function of the noise level and of
the initialization method.

4 Conclusions and outlook

We have introduced a new decision scheme for implementing a global competition between hits
and tracks. It has been shown to work better than existing schemes in the presence of mirror
hits and high noise levels. We intend to pursue this approach in detectors without mirror hits, in
particular the CMS Inner Tracker.
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