
Object Oriented reconstruction for the
Instrumented Flux Return of BABAR

Luca Lista for the BABAR Computing Group

INFN Sezione di Napoli
Complesso Universitario di Monte Sant’Angelo, edificio G, I-80126, Napoli, Italy

Abstract

The application of Object Oriented design patterns to the reconstruction software of the
Instrumented Flux Return detector of BABAR experiment is presented. The use of abstract
interfaces improved the developement of reconstruction code and permitted to flexibly apply
modification to reconstruction strategies, and eventually to reduce the maintainance load. The
experience made during the last years of developements is presented.

1 The Instrumented Flux Return

The Instrumented Flux Return (IFR)[1] system identifies muons and neutral hadrons in the BABAR
experiment[2]. The active elements of the detector are a number of layers (19 in the barrel, 18 in
the endcaps) of Resistive Plate Chambers (RPC) inserted in the gaps present in the segmented
iron yoke of BABAR magnet. Two layers of cylindrical RPC inserted inside the coil complete the
system. Each layer is equipped with two strip planes which produce a digital pattern. The recon-
struction creates a charged cluster, which is candidate for a muon or charged hadron signal, from
the strips associated to a charged track. The strips unassociated to charged tracks are clustered to
form candidates for neutral hadron signal.

2 Recontruction Objects

Reconstruction information is modeled as objects in BABAR reconstruction software. The most
basic object produced by the IFR detector is the strip. Adjacent strips in the same readout view are
clustered into one-dimension (1D) cluster objects, also referred to as hits. Two different clustering
algorithms for charged and neutral particles produce cluster objects. The IFR is segmented in
sectors. The barrel is divided in 6 sectors along φ, each endcap half door is divided vertically into
3 sectors, while the cylinder is divided in 4 sectors. Due to this segmentation, we define basic
three-dimension (3D) cluster objects that model a cluster with information contained in a single
sector; a composite pattern[3] is applied to define clusters which contain information in more
than one sector. A 3D cluster reconstructed in a sector with planar geometry (barrel or endcap)
is composed of two two-dimension (2D) cluster objects reconstructed in each of the orthogonal
readout views, spanning many layers of the sector. A cluster reconstructed in the cylindrical RPC
is composed of 2 to 4 hits in the four stereo readout views. The stereo readout permits a reduction
of the “ghost” intersections when more than one track is present in one sector. All 3D cluster types
inherit from the same base class. This shields the clients from implementation details. This kind
of class organization permits to compute most of the interesting cluster quantities in the coordinate
system local to the sector or readout view, then combine the results in the composite object using
a recursive computation.

Figure 1: Class diagram of the IFR clusters and visitor classes.

The client can request the needed information, like the cluster centroid, number of strips
fired, number of layers hit, cluster covariance matrix, etc., using a visitor pattern[3] (fig. 1). New
functionality of the cluster classes can be introduced without changing any of the cluster class
interface with the addition of a new concrete visitor subclass[4].

An example of the code that computes some cluster quantities is the following:

IfrAbs3D * cluster; // get a cluster from somewhere
int n = cluster->accept(ifrVstInt ("numberOfStrips"));
HepPoint p = cluster->accept(ifrVstPoint("centerOfGravity"));

The functions ifrVstInt, ifrVstPoints fetch from an hash map a specific visitor based
on a string key. In this way, the client code needs only to depend on the abstract cluster and abstract
visitor base classes. The classes that define clusters and visitors are separated in different packages.
Base classes (IfrAbs3D and IfrClusterVisitor) are contained in the package IfrData, while
all concrete cluster types are in package IfrDataImp, and all concrete visitors are in the package
IfrVisitors. Clients of the IFR reconstruction only need to depend on the most stable package
IfrData, with no dependency on the package IfrVisitors that is most frequently changed.

3 Access to geometry information

An IFR detector model is needed in order to access the detail of the geometry information, like
strip pitch, layer orientation and position in the space, corrected by alignment calibration. The IFR
detector model is organized in a composite structure: the IFR detector is composed of different
sectors, each made of different layers, each with two readout views, each with different Front End
Cards. A composite pattern has been applied to encapsulate the basic abstract functionality, like
coordinates transformations from local to global and viceversa, and the navigation tools along the
detector tree. Specific smart iterators permit to iterate on all the subcomponents of a given struc-
ture at an arbitrary depth in the detector tree. The classes have been organized in two packages:
IfrGeomBase, which contains the base classes of the composite pattern (IfrDetComponent,
IfrDetComposite, IfrDetLeaf) and the base iterator, while the package IfrGeom contains all
the other subclasses. Most of the clients need to depend on IfrGeomBase only; still some limited
dependencies on the IfrGeom subclasses are needed because some functionality specific to the
concrete component cannot be abstracted in the base class (like the strip pitch information, which
belongs to the view).

4 Cluster Reconstruction

Two different algorithms are applied to reconstruct charged and neutral clusters in the IFR. The
clustering algorithms are implemented as modules of the BABAR Framework[5]. First, all charged
tracks are extrapolated in the non uniform magnetic field map. The intersection of the track extrap-
olation with the RPC layers are computed, and all the hits distant from the expected intersection
less than a given cut are associated to the track. The associated hits are passed to a specific object
(IfrClusterizer) that has the task, independent on the clustering algorithm, of organizing the
1D clusters by sector and by view, and arrange them into a specific type of cluster (single planar
or inner, or composite), according to the hit pattern. All hits remaining unassociated to charged
tracks are then processed for neutral clustering. The neutral clustering algorithm first creates 2D
cluster objects associating hits of the same readout view which are spacially closer than a maxi-
mum distance cut in that projection (fig. 2), then the 2D clusters of the same sector are combined
in a 3D cluster object if the hit layers match the two projections within some tolerance. A small
fraction of ambiguous associations may survive; the ambiguity can be suppressed if further infor-
mation is provided (like the expected KL direction), and the update of the ambiguity status of all
the clusters is handled automatically when a cluster is forced externally to become unambiguous.

Figure 2: Adjacency criterion for 2D clustering.

The inner RPC has a specific reconstruction algorithm that tries all possible combinations
in the same sector, trying first to combine 4 views, keping the combination with the best χ2, then
trying the 3 views combinations on the remaining hits, then 2 views combinations.

It is also possible to create composite neutral objects applying an adjacency cirterion on the
neutral components reconstructed in different sectors.

Framework modules contain the steering code for 2D (and 3D) clustering, including the
details of iterating over sectors, views, etc., and use abstract cluster finder objects which abstract
the basic functionality of performing clustering on all hits of a given view (or sector). Different
concrete subtypes can implement specific algorithms, as in a strategy pattern[3]. The different
algorithms can be selected at run time.

In an early stage of the reconstruction developement, before the track extrapolation tools
where available, the neutral clustering algorithm was applied for charged cluster finding as well.
The clusters found in this way where matched to the charged tracks and composite objects where
created combining all clusters associated to the same charged track. Moving to the current charged
clustering algorithm didn’t require any change to the available cluster classes and the algorithm
could be completed in a time shorter than what was initially scheduled. The cluster representations
and the way visitors extract information from the clusters in fact do not depend on the algorithm
used to build the cluster, and this permits easy improvements of the reconstruction algorithms, and
preserves external client code unchanged because no change is induced in the class interfaces.

5 Particle identification

Particle identification is made using discriminating variables extracted from the cluster. The dif-
ferent distribution of variables like number of interaction lengths, last layer reached, and average
strip multiplicity permit the rejection of pion background for muon identification.

Such quantities are computed on different cluster types using visitor classes. In some cases,
specific visitor classes need extra information for their computation; for instance, the visitor that
computes the χ2 of the match of the cluster with a charged track needs to receive the track extrap-
olation as input to access the intersections with the RPC layers.

A summary object which contains the most relevant quantities is delivered to the user code.
This IfrPidInfo inherits from a common BABAR base class, and its functionality is described
in a separate presentation[6].

6 Software developement and design evolution

Several migrations have occourred in the IFR software before the currently used version. Some-
times we saw problems occourring repeatedly in the same code areas as new features where in-
troduced. In those cases, the application of a more flexible design has always carried benefit
towards more effective and safe developement, and isolating problems. This was the case of the
introduction of the visitor rather than the simple usage of virtual functions in the base class.

The usage of a polymorphic design improved the developement process. For instance, dur-
ing the developement of the code for the computation of the number of interaction lengths tra-
versed in the iron using a fit to the cluster hits, we introducted abstract classes to model a curve
approximation of the cluster reconstructed in 2D and 3D. In this was, the actual computation using
the detector model was tested using a simple straight line fit as concrete implementation, and was
developed in parallel to the polynomial fit implementation, coded as a separate subclass of the
curve approximation. The integration of the two components was immediately successfully.

References

1 The Muon and KL Detector for the BABAR Experiment: Physics Requirements, Final
Design and Start of Construction, Nucl. Physics B (Proc. Suppl.) 61B (1998) 244-249

2 BABAR Technical Design Report, BABAR Collaboration, SLAC Report SLAC-R-95-
4578, March 1995

3 Design Patterns, E. Gamma, R. Helm, R. Johnson, J. Vlissides, Addison Wesley 63361,
1995

4 L. Lista, proceedings of CHEP ’98: “Evolution of cluster design in the Instrumented Flux
Return (IFR) of BaBar”, August 31 - September 4, Chicago, USA.

5 E.D.Frank, R.G.Jacobsen, E.Sexton-Kennedy, proceedings of CHEP ’97: “Architecture of
the BaBar reconstruction system”, 7-11 April 1997, Berlin.

6 G. De Nardo, L. Lista, proceeding of CHEP 2000: “Object Oriented design of Particle
Identification Software for Instrumented Flux Return subsystem of the Babar detector”, 7-
11 February 2000 Padova.

