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Abstract

We have developed two tabular editors for Geant4, i.e., Geant4 Geometry Editor and
Physics Editor. They provide for a user, his own implementation of user mandatory C++
classes which must be derived from the two base classes of Geant4 for geometry and physics.
They are implemented with Java-2 and run on Linux and Windows.
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1 Why Tabular Editors?

To use Geant4, user must define three mandatory classes, two of which are user initialization
classes, and the other is the user action class. The base classes of these mandatory classes are
abstract, and Geant4 does not provide default behavior for them. User must inherit from the
abstract base classes and implement his own classes.

One initialization class is G4VUserDetectorConstruction in which the complete detec-
tor setup should be described. Another is G4VUserPhysicsList in which user must specify all
particles and physics processes used in his simulation.

GGE (Geant4 Geometry Editor) and GPE (Geant4 Physics Editor) have for their purpose to
help a user to implement his concrete classes. The editors have a look of spreadsheets with fixed
numbers of columns and with as many rows as filled by a user. From the contents of the table, the
concrete class files can be automatically generated. The tables can be saved in the Java’s persistent
files and can be loaded for reuse. The editors are intended to make him free of complex usage of
classes and of straight-forward but tedious typing of names of many classes and methods.

In designing the editors, we have to decide the trade-offs between their feasibility and wider
range of their applicability. While the general patterns of implementing the derived classes can
be found in some parts, some typical application patterns must be assumed to give shape to the
design.

2 GGE: GEANT4 Geometry Editor

GGE consists of the material editor and the volume editors for logical and physical volumes. While
GGE provides the capability of defining compound materials and logical volumes in a general way,
its capability of defining physical volumes is limited to relatively simple spatial arrangements as
described later.

2.1 Material Editor

Materials (chemical compounds, mixtures) made of elements are supported by GGE. At present, it
doesn’t support elements made of isotopes. Material editor is composed of two independent tables;



the table for materials from scratch with the columns (Use, Name, A, Z, density and unit, state,
temperature and unit, pressure and unit) and one for compound materials with the columns (Use,
Name, Elements, density and unit, state, temperature and unit, pressure and unit). By clicking the
Elements column, a new window is open to input a composition of the compound material with
either fractions by weight or numbers of atoms. The periodic table of elements is popped-up to
select one (for scratch) or multiple elements (for compound) by mouse click(s).

From each row marked as Use, C++ code for instances of G4Element and G4Material
classes are generated. The material table can be saved in a persistent file.

2.2 Volume Editors ; logical and physical volumes

A detector geometry is made of a number of volumes. The largest volume, i.e., the world volume
contain all other volumes. Daughter volumes can be placed within another mother volume. With
GGE, such hierarchy of volumes can be defined to create complex geometry.

2.2.1 Logical volume editor

Each row of the table of the logical volume with four columns (volume’s name, solid, material,
VisAttribute) corresponds to the mandatory arguments to make an instance of the G4LogicalVolume
class. Other arguments; G4FieldManager, G4VSensitiveDetector and G4UserLimits are set to the
defaults.

Nine CSG and two BREP solids can be selected from the list-box. The guided type-in cells
for the respective solids facilitates user’s input of their parameters and canonical units. A solid can
be previewed by DAWN renderer. GGE doesn’t support Boolean operation between solids.

From each row in the logical volume table are generated C++ codes for its solid, logical
volume and its visualization attribute.

2.2.2 Physical volume editor

From the G4PVPlacement class, GGE can derive a physical volume of single positioning and of
repeated positioning of a volume with the identifying copy numbers. GGE provides two types of
spatial arrangement of volumes; translation along an axis and axial rotation. Mother volume can be
either logical or physical. Frame or body rotation can be selected. GGE implements G4PVReplica
class to have multiple identical copies along the Cartesian or cylindrical coordinates.

We take the case of “Repeated positioning of a volume” for the illustration.
A translational arrangement is defined by a row with thirteen columns; the name of the

physical and logical volume, the type of the mother volume, the name of the mother volume, the
position of the first copy, the direction of translation (X, Y or Z axis) and incremental step size.

An axially rotational arrangement is defined by a row with sixteen columns; the type of
rotation, the name of the physical and the logical volume, the type and the name of the mother
volume, position of the center of axial rotation, rotational axis (parallel to X, Y or Z), the radius
of rotation, the starting angle and incremental step angle, and the number of copies.

From each row in the table are generated a chunk of C++ codes to initialize the “for” loop
with the number of copies, to specify the amount of translation and rotation for the i-th copy, and
to make instances of G4PVPlacement located at the i-th G4Transform3D-ed position.

2.3 Generation of C++ code

The pure virtual method Construct() of the base class G4VUserDetectorConstruction must be
implemented in the user’s concrete class for his geometry. GGE generates, in sequence, groups of
C++ codes for G4Elements, G4Materials, G4VisAttributes, G4Solids, G4LogicalVolumes, Single



Positioned Volumes, Repeated Volumes, and Replicas. The order of instantiation inside each group
is decided by the tables filled by the user. Finally the name of the world volume must be returned
by Construct(). GGE output the C++ code to a editor widget in which all necessary header files
are automatically included.

2.4 Compile and visualize

GGE is supplemented with the minimum set of class files to make a Geant4 executable for visu-
alization. To have the whole view of the detector, user have to follow à-la-TEX scheme, that is, to
compile the generated C++ codes, to link with the Geant4’s libraries and to use its visualization
system. An integrated GUI called Momo offers menu buttons to help a user with a rapid iteration
to use GGE, to compile and to use GAG (Geant4 Adaptive GUI) to control visualization.

3 GPE: Geant4 Physics Editor

GPE helps a user to implement three pure virtual methods derived from the mandatory base class
G4VUserPhysicsList: ConstructParticle() to construct particles, ConstructPhysics() to con-
struct processes and register them to particles and SetCuts() to set a cut value in range to all
particles.

GPE consists of two physics tables, one for electromagnetic processes and other for hadronic
processes. Each physics table has two buttons to pop up the particle table and the process table
proper to it. Among seven major process categories: “electromagnetic”, “hadronic”, “transporta-
tion”, “decay”, “optical”, “photolepton-hadron”, and “parameterization”, the category of electro-
magnetic processes is implemented in GPE. We have decided that GPE incorporates, by default,
the transportation and decay processes. Hadronic processes with various models is under con-
struction.

Parameterization and optical processes are not implemented due to their close connection
to the detector geometry.

User has to define the name of his concrete class and to specify the default cut value. The
table as well as all user-defined objects are saved in a persistent file and can be loaded for reuse.

3.1 Particle Tables

GPE has two particle tables, one for electromagnetic processes and another for hadronic processes.
The former has buttons for all particles available in Geant4, while the latter has much less buttons
only for long-lived mesons, baryons and ions.

To implement ConstructParticle(), user can choose a particle or the whole set of particles
belonging to a category from the particle table. Selected particles are automatically copied to the
physics table. Particles in the category “Shortlived” can be either chosen all at once or not chosen
at all.

3.2 Process Tables

Each process must have information on applicable particle types and default ordering parameters
for each DoIt method. Each hadronic process must have model(s) registered to it. A model must
have information on applicable particle types and processes.

A row of the electromagnetic physics table consists of five columns; particle, process, or-
dering parameters (AtRest, AlongStep and PostStep). The table of the electromagnetic processes
contains nineteen classes of “standard” electromagnetic processes, six classes for muons, two
classes related with X rays and seven low energy processes. Upon selection of a process from



the table of electromagnetic processes, the process is copied to the physics table with the default
ordering parameters.

The button for the default transportation and decay processes is provided, too.
The table of hadronic processes has twenty nine buttons for inelastic processes of long-lived

hadrons and ions, hadron capture, hadron fission and seven buttons for stopping processes.

3.3 Generation of C++ code

ConstructParticle() methods consists of ConstructBosons(), ConstructLeptons(), ConstructMesons(),
ConstructBaryons(), ConstructIons() and ConstructShortLiveds(), corresponding to six cate-
gories of particles in Geant4. Scanning the physics table, GPE includes all necessary header files
of particles. Generation of C++ codes for ConstructParticle() is straightforward.

Scanning the physics table, GPE includes required process headers to ConstructPhysics().
ConstructPhysics() method consists of ConstructEM() for electromagnetic processes, Construct-
General() for decays, ConstructHad() for hadronic processes etc.. For ConstructEM(), GPE
generates codes of the loop for the particle iterator. Then, it generates codes within the loop
to register a process to the process manager by specifying the pointer to the process object and
ordering parameter for the process, for example;

if (particleName == ``e-'') {

pmanager->AddProcess(new G4MultipleScattering(),ordInActive,1,1);

}

The C++ codes of ConstructGeneral() for decay processes and the transportation are hard
coded by GPE. The default cut value user have typed in is used to implement SetCutsWithDe-
fault().

4 Implementation of GGE and GPE

We have chosen Java because of its Swing set, serialization and platform-independence. As their
specifications have been evolving rapidly, GGE and GPE have had to pass through many revisions.
At present they run with JDK-1.2.2 on Linux and Windows.
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