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Abstract

I discuss the kinematic fitting program KWFIT and some general lessons learned in ap-
plying kinematic fitting to particle physics data. Though originally written for CLEO use,
KWFIT is a general standalone program.

KWFIT encodes standard constraints involving vertexing, mass, energy, 4-momentum
and back-to-back tracks. A powerful capability is its ability to build “virtual particles” from
a set of daughters under a vertex constraint. I have recently added routines to optimally fit for
lifetimes using all track and vertex information and a new module that allows the lifetime of
unusual classes of decays such as D0 → KSπ0 to be determined.

The large amount of accumulated experience with KWFIT points to certain lessons about
track representation and sensitivity to errors.
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1 Introduction: Kinematic Fitting

I discuss in this paper the kinematic fitting package KWFIT, various versions of which have been
used in the CLEO experiment since 1990. Kinematic fitting can be defined as a mathematical
procedure in which one uses the physical laws governing a particle interaction or decay to im-
prove the measurements describing the process. For example, the fact that the three daughters
in D+ → K−π+π+ decay must come from a common space point can be used to improve the
momentum vectors of the daughter particles, thus improving the mass and momentum resolution
of the D+. These resolution improvements translate to larger signal to background ratios, fre-
quently elevating marginal signals to statistical significance. In recognition of its importance in
data analysis, kinematic fitting is used in virtually all high energy physics experiments today.

2 Introduction to the KWFIT Package

The main characteristics of KWFIT are presented here; interested readers can find out more infor-
mation – or download a copy – from the online documentation[1]. (Every listed routine is hyper-
linked directly to the documentation describing it.) At the present time KWFIT is implemented
in Fortran, but that is an unimportant limitation since my aim here is to discuss the algorithms and
general implementation considerations. The language issue is temporary anyway since a C++ ver-
sion is being designed, though it should be pointed out that the implementation in object-oriented
languages needs to be done with great care because of the complexity of the results one wants to
extract. Mathematics is easy, design is hard.

KWFIT is built around the following data entities: (1) tracks (charged, neutral, etc.), (2) a
magnetic field (fixed, but arbitrarily oriented), (3) primary vertex position and dimensions and (4)



initial 4-momentum of the primary vertex. The first two entities are required because manipula-
tions of tracks moving through magnetic fields are fundamental operations. Their values can be
entered through standard interfaces. Additional track input routines have been written to simplify
the process of converting CLEO tracks to KWFIT format. These track input routines constitute
the only experiment-specific part of KWFIT and they are isolated in a single subdirectory. Other
fill routines can be added as needed, e.g., for particles in the HEPEVT track list.

Seven variables are generally needed to completely define a track[2]. KWFIT uses as its
internal representation a point on its trajectory and its 4-momentum there, represented here as α,
where α = (px, py, pz, E, x, y, z). I call this the ‘W’ representation. I will comment on the track
representation later when I discuss numerical issues.

3 Implementation of constraints

3.1 General mechanism

Constraints are implemented in KWFIT through the Lagrange multiplier (LM) mechanism, though
some mathematical tricks are used to dramatically improve speed and to overcome subtle numeri-
cal instabilities. Consider a set of n tracks (a total of 7n parameters) which we represent by the row
vector αT = (αT

1 , αT
2 , . . .αT

n ). Initially, the track parameters have the unconstrained values α0 and
covariance matrix Vα0, obtained by a track fit, for example. The r functions describing the con-
straint conditions can generally be written H(α) = 0, where H = (H 1, H2, . . .Hr). Expanding
about a convenient point αA yields the linearized equations Dδα+d = 0, where D il = ∂Hi/∂αl

and δα = α−αA. The χ2 can then be written χ2 = (δα−δα0)T V−1
α0 (δα−δα0)+2λT (Dδα+d),

where λ is a vector of length r containing the lagrange multipliers. Minimizing the χ 2 with respect
to δα and λ yields the solution[3] for δα and its covariance matrix,

δα = δα0 − Vα0DTλ

λ = VD(Dδα0 + d) (1)

Vα = Vα0 −Vα0DT VDDVα0

where VD = (DVα0DT )−1 is the constraint covariance matrix and χ2 = λTV−1
D λ = λT (Dδα0+

d). Note that the χ2 can be written as a sum of r terms, one for each constraint.
KWFIT implements many constraints utilizing this mechanism, including (1) mass, (2) en-

ergy, (3) total momentum, (4) 3-momentum, (5) 4-momentum, (6) back-to-back pair (unboosted),
(7) back-to-back pair (boosted), (8) fixed vertex, (9) known but fuzzy vertex, (10) unknown vertex,
(11) lifetime, (12) double vertex (for D0 → KSπ0) and (13) double vertex plus lifetime. Special
2-D versions of the single vertex constraints are also provided.

In general, the nonlinearities of even simple fits requires that the procedure above be applied
iteratively until satisfactory convergence is achieved. Track parameters and their errors, covariance
matrices, fit information and other quantities can be obtained through access routines.

3.2 The special case of vertex constraints

Vertex constraints introduce subtleties that can cause numerical problems. The subtleties, when
properly accounted for, turn out to make the solution much faster and more stable numerically than
what would be obtained by straightforwardly applying the LM procedure in the previous section.

First, vertex constraints add new variables, the vertex coordinates x, so we insert them
before the track quantities to create the extended parameter vector: α̃T = (xT , αT

1 , α2,
T . . .αT

n ).
Similarly, we create the extended constraint matrix, D̃ = (E, D), where Eij = ∂Hi/∂xj . For



the case where the initial vertex is unknown, the vertex position never appears in the quadratic
part of the χ2 and the LM procedure in the previous section fails. A simple way to overcome
this difficulty is to assign a large initial error to the vertex position and apply the LM algorithm.
Unfortunately, the calculation of the vertex covariance matrix involves a subtraction of two very
large matrices, a stability problem which even double precision does not solve.

The algorithm in KWFIT avoids this problem and gains significant execution speed by
exploiting the special nature of vertex constraints. For each track there are two equations which
relate that track’s parameters with the vertex coordinates independently of the other tracks. If the
tracks are initially uncorrelated, the 2n× 2n matrix V−1

D̃
= D̃Vα̃0D̃T has a special form that can

be inverted with n 2 × 2 inversions and a single 3 × 3 inversion[3]. Further matrix manipulations
eliminate the instability caused by subtracting two large matrices when determining the covariance
matrix of the vertex coordinates x. It can easily be shown that this method is a Kalman algorithm in
which the tracks are the measurements and the vertex coordinates are the estimated parameters[4].

4 Virtual Particles

In many physics analyses we wish to merge a set of particles so that the new “virtual” particle and
its covariance matrix replace the original particles in subsequent analyses. Consider, for example,
the decay chain B

0 → D∗+π−, D∗+ → D0π+, D0 → K−π+. We could take the following
steps: (1) combine K−π+ to form a D0, (2) merge the D0 with a π+ to make a D∗+ and (3)
combine the D∗+ with a π− to make a B

0
. At every step the merging process must produce a

virtual particle that is the best approximation to the reconstructed particle.
KWFIT implements an efficient and unusual algorithm[5] for building virtual particles

based on the vertex constraint. The daughter tracks are first vertexed using one of the standard
vertex constraint routines (unknown point, known but fuzzy point, or fixed point). The updated
tracks are then swum to the vertex and the 4-momentum is calculated by summing the 4-momenta
of the tracks.

The calculation of the 7 × 7 covariance matrix requires much care because it must include
(1) the 4 × 4 momentum contributions from the daughter tracks, (2) the 3 × 3 position piece
that comes from the vertex fit, (3) the correlations introduced by the vertex constraint and (4) the
errors and correlations arising from the swimming process. My derivation of the virtual particle
covariance matrix fully exploits the Kalman structure of the vertex fitting algorithm to produce an
efficient closed-form formula[5].

The algorithm implemented in KWFIT is actually more general because it permits three
classes of tracks to be used simultaneously in building a virtual particle: (1) tracks which are used
to determine the vertex; (2) tracks which are not used to determine the vertex but are forced to pass
through the vertex determined from the class 1 tracks; and (3) tracks such as neutrals which have
no position information but supply 4-momentum. The derivation of the covariance matrix is much
more complicated than described above, but after extensive matrix manipulations the resulting
formula becomes identical to the simple case, provided the E matrices are properly defined[5].

5 Optimal Determination of Lifetime

KWFIT was recently equipped with a new lifetime fitting algorithm[6] that optimally uses all
track information and works for charged or neutral tracks for arbitrary distances. The algorithm
uses the three equations of motion as the constraint conditions linking a track with a known starting
point (fixed or fuzzy). The equations are functions of s/p, where s is the arc length from the
starting point and p is the momentum. The algorithm exploits the trivial fact that s/p = cτ/m,



where cτ is the proper lifetime in distance units and m is the mass. The LM procedure is then
used to determine cτ , its error and correlations with other variables (two degrees of freedom).

Even more recently, an algorithm was added[1] to KWFIT that finds the lifetime of a parti-
cle decaying into two daughters, one of which has no position information, e.g. D 0 → KSπ0. The
technique uses the fact that the neutral particle supplies 4-momentum which alters the trajectory
of the other particle in such a way as to pass through a known starting point (fixed or fuzzy). The
LM procedure then determines cτ plus its errors and correlations, with one degree of freedom.

6 Experience with Kinematic Fitting and KWFIT

Years of experience with kinematic fitting have brought many lessons. First, it has become clear
that double precision should be the default for all floating point variables. There are many matrix
operations and therefore inevitable roundoff errors, particularly for vertex constraints with one
degree of freedom, where four terms must cancel to yield the (χ2)−1/2 dependence near zero.

Second, it came as a surprise that many fits did not converge sufficiently with the default
number of iterations. The criteria in effect now, which are adequate but can easily be changed
through a set routine, is that convergence is achieved when the change in chisquare between two
successive iterations satisfies |∆χ2| < 0.001 within 10 iterations.

Third, it appears that using the energy as one of the internal track variables causes some
numerical problems. The fundamental reason is that the energy is usually highly correlated with
the momentum components. Moreover, the mass constraint is very non-linear, and a particle
formerly on the mass shell can easily be pulled off by applying a subsequent vertex constraint.
These problems can be resolved by replacing energy by mass in the internal representation. In
most cases mass is not strongly coupled to the momentum components (the correlation is zero for
reconstructed tracks and gammas) and the mass constraint becomes linear. The change to mass
will be made in the OO version, expected this year.

Finally, many people[7] find the idea of doing successive fits through a decay chain rep-
rehensible, preferring instead to fit the entire chain at once. Unfortunately, a comprehensive fit
provides only a single χ2 to evaluate the fit quality, so valuable information is lost. However, the
χ2 calculation for r constraints can be written as a sum of r 2 terms, each of which provides fit
quality information. This information is accessible from KWFIT and used to improve fit quality,
though it has never, to my knowledge, been used. This area requires further research.
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