
BINGO: A Set of Object Oriented Tools for
Hierarchical Pattern Recognition and Track Fitting

D. Chin1, A. Magerkurth2, M. Marsh3, M. Palmer3, J. Thaler3

1 Department of Physics, Applied Physics and Astronomy, Binghamton University, USA
2 Department of Physics, Cornell University, USA
3 Department of Physics, University of Illinois at Urbana-Champaign, USA

Abstract

We describe an object oriented set of tools for carrying out integrated hierarchical pat-
tern recognition in a tracking system composed of an arbitrary set of tracking devices. Two
fundamental components are part of the method, a LayerSet object for pattern recognition
operations and a TrackFilter object for manipulation of track candidates. The other major
components in the package are: a management object that controls the package’s overall op-
eration; a generic input data object capable of holding information from any type of tracking
element; and a track candidate object that can receive output from a LayerSet or TrackFil-
ter algorithm. We have implemented a dictionary-based pattern recognition algorithm in this
framework.

Keywords: Pattern Recognition, Tracking

1 Introduction

Several key steps define the exercise of pattern recognition in any real detector. First of all, hits
in the detector must be converted to spatial information. Secondly, the hits must be processed
by one or more algorithms in order to group individual hits into lists of hits which potentially
belong together as track candidates. Thirdly, the track candidates typically need some level of
preliminary fitting both to exclude bad possibilities and to provide starting track parameters before
being sent off for final fitting. Lastly, the necessary bookkeeping must be carried out to keep the
track candidates, unfitted and fitted, properly organized.

In developing the BINGO inner tracker for CLEO III, we closely examined the above issues
with the goal of standardizing the various operations wherever possible and isolating any details
of a specific detector to the user interface. This approach places the user in a position to concen-
trate primarily on implementing pattern recognition algorithms and studying their performance
instead of dealing with detailed code infrastructure. The current CLEO III implementation uses
this package as an inner tracker to improve our low momentum pattern recognition capabilities for
a silicon microstrip device in combination with the inner drift chamber layers and the drift cham-
ber cathodes [1]. For operation in the CLEO III software environment, we are able to directly
interface to the package from C++. Since the CLEO II software environment is Fortran based,
we have also provided an interface layer suitable for access from procedural languages. Thus the
package is readily adaptable to the software environments of the majority of high energy physics
experiments.



2 Package Overview

Five core objects make up our pattern recognition package:
� Scungili This is the master class which manages the operation of one or more track

finders (implemented with the LayerSet class) and one or more track fil-
ters (implemented with the TrackFilter class) . It also manages the lists
of track candidates and any scratch memory requested by a LayerSet or
TrackFilter.

� TrackHit This class provides a standard interface to the data.
� TrackCand This class provides a standard internal representation of the list of hits be-

longing to a track and the track parameters and error matrix for the track
if they exist. Both the LayerSet and TrackFilter classes can internally
generate TrackCands. In addition, the user can also load TrackCands
from an external source (ie., from another tracking package) for compari-
son and merging with internally generated candidates if so desired.

� LayerSet This class carries out pattern recognition operations. The fundamental
components of the LayerSet are a set of tracking layers on which to op-
erate, a pattern recognition algorithm with which to examine the speci-
fied tracking layers, and a user-assigned ID. Each implemented LayerSet

takes a list of TrackHit objects as input and generates a list of TrackCand
objects as output.

� TrackFilter This class is explicitly designed to manipulate TrackCand objects as inputs
and to generate updated TrackCand objects as outputs. Thus it can filter
and fit preliminary pattern recognition candidates as well as merge multiple
candidates into a more complete track.

These objects provide all of the infrastructure needed to implement a pattern recognition algorithm
for a detector.

3 Managing Pattern Recognition and Track Candidate Creation with Scungili

Scungili is a utility for coordinating the simultaneous operation of several track finders and
track filters. Implementing the package in a C++ environment is quite straightforward. The
user must first create an instance of Scungili as well as instances of one or more LayerSets
and TrackFilters. During job processing, the user’s interface must insure that the relevant
Scungili methods are activated at the correct time. The standard job flow entry points include:
beginJob(), beginRun(), event(), endJob(), and endRun(). In addition, two other methods
are defined which can be called at arbitrary points in the job: status() and reset(). Once any
of the Scungili methods has been called, the corresponding methods for any enabled LayerSet

or TrackFilter will automatically be called by Scungili with no further action from the user.
The order of operation of LayerSet and TrackFilter methods is simply determined by the
order in which they are enabled within Scungili, with all LayerSet operations preceding any
TrackFilter operations.

The interactions between Scungili and the other classes in the package are shown in Fig-
ure 1. In order to illustrate these interactions, we can consider the steps that take place at the
event() level:

1. The user prepares a vector of TrackHit objects to pass to Scungili.
2. The user calls Scungili::event().
3. Scungili calls each LayerSet::event() method and provides each LayerSet with the

relevant list of TrackHit objects. Scungili stores any found TrackCand objects returned



Abstract LayerSet
beginRun()
event()
endRun()
addTC()

Concrete LS Concrete LS

Data Processor
beginRun()
endRun()
event()

Scungili

enableLayerSet()
disableLayerSet()
beginRun()
event()
endRun()

TrackCand

TrackHit

Abstract TrackFilter
beginRun()
event()
endRun()
addTC()

Concrete TF Concrete TF

Notation:

Knows about (no creation or ownership)

Creates

Owns (is responsible for)

Many objects

Scungili Class Relationships

Not all member functions are shown

Figure 1: The class relationships within Scungili.

by a LayerSet.
4. Scungili calls each TrackFilter::event() method and provides access to the list of

found TrackCand objects. Scungili stores any fitted TrackCand objects returned by a
TrackFilter.

5. The user is now able to obtain a final list of fitted track seeds from Scungili for further
processing.

Thus the code is structured to insure that the pattern recognition steps occur in the proper order.
Also, the bookkeeping necessary to keep track of the pattern recognition results is automatically
handled so that the user is completely freed from these details.

In order to accommodate access from procedural languages a C++ singleton can be used to
create the necessary class structure for the package. A set of singleton functions which execute
the Scungili methods can be directly called from Fortran or C. We employ this method when using
this package to run in the CLEO II Fortran framework.



4 Pattern Recognition with the LayerSet Class

We have implemented the MARK III dictionary-based pattern recognition algorithm [2] as the
primary type of LayerSet (the BinGoLayerSet) for the BINGO package. In this algorithm,
each tracking layer of interest is divided into a group of bins. Up to 8 tracking layers at a time
are examined for the presence of a pattern of hits corresponding to a physical track. Particular
advantages of this algorithm for our purposes are: the binning technique readily accommodates
any sort of detector geometry; the integer pattern recognition does not require fine-tuning cuts;
and, the method is insensitive to detailed detector constants and performance issues.

Our implementation of the BinGoLayerSet class cleanly isolates the core algorithm from
the details of any specific detector. All of the detector-specific information is distilled into a user-
supplied binning function which provides a map from the ID of a detector element associated with
a hit to the corresponding bin in its tracking layer. Standard methods are provided to generate track
dictionaries using a Monte Carlo simulation of a given detector. Thus it is quite straightforward to
implement this algorithm for arbitrary experimental configurations.

5 Track Candidate Creation, Filtering, and Manipulation with the TrackFilter

Class

A range of functionalities can be imagined for the TrackFilter class. The first version that we
have implemented applies simple, fast line and circle fit operations to TrackCand objects provided
by the LayerSet class. These preliminary fits serve to filter noise hits from the pattern recognition
candidates and resolve drift chamber hit ambiguities. The resulting fitted track candidates carry
along track parameter and error matrix information from the fits which can be used in subsequent
processing.

A second TrackFilter operation that we have implemented provides chi-square matching
between TrackCands from different LayerSets. This allows us to join BinGoLayerSet pattern
recognition candidates from different regions in the detector into more complete tracks that can
then be fitted and placed in the general repository of seed tracks in the CLEO detector. We are
also exploring the use of this algorithm to merge track candidate lists from our package with
the candidates produced by the road-based algorithm which is employed for higher momentum
tracking at CLEO.

6 Summary and Conclusions

In summary, we have designed a set of object oriented tools that allow us to coordinate pattern
recognition within a group of user-specified LayerSets, to verify that the resulting track segments
are reasonable by means of a preliminary fit, and to link track segments from different regions of
a detector into more complete tracks which are then returned to the user for further processing.
Care has been taken in both the management infrastructure and in the design of the primary pat-
tern recognition package to isolate detector-specific information to a well-defined set of interface
routines. In addition, the pattern recognition algorithm that has been chosen can readily handle a
variety of detector geometries. Thus the package is easily adapted for use in other experimental
configurations. It is also straightforward to introduce additional algorithms.

References

1 CLEO Collaboration, CLNS 94/1277, 1994.
2 J. Becker, etal., Nucl. Instrum. Methods , A235,502(1985).


