
OO model of STAR detector for simulation, visualization and
reconstruction

V. Fine1;2, P. Nevski1

1 Brookhaven National Laboratory, USA
2 Joint Institute for Nuclear Research, Dubna,Russia

Abstract

The Solenoidal Tracker At RHIC (STAR) is a large acceptance collider detector, at Brookhaven
National Laboratory. Most of the detailed knowledge on the STAR detector is implemented
into a GEANT3 based simulation model. This knowledge certainly is valuable for the new
STAR OO software.

STAR ROOT-based framework was upgraded to provide tools to access this model via
a set of TVolume classes. In this paper we present our experience with migration of the
GEANT3 based detector simulation for STAR to an OO model.

Keywords: OO, Fortran, C++, ROOT, GEANT3

1 Introduction

The Solenoidal Tracker At RHIC (STAR), commissioned at Brookhaven National Laboratory in
1999, contains a set of Time Projection Chambers (TPCs) for charged particle tracking over almost
six units around central rapidity, a silicon detector for vertexing, electro-magnetic calorimeters,
and a number of other systems.

STAR is designed to measure the momentum and identify several thousand particles per
event from the collision of heavy nuclei at ultra-relativistic energy. Over 300 Terabytes of real and
simulated data will be generated each year. The unprecedented complexity of the events and the
total data volume present a formidable software challenge.

STAR has developed a software framework supporting simulation, reconstruction and anal-
ysis in offline production, interactive physics analysis and online monitoring environments that is
well matched both to STAR present transitional status between Fortran and C++ based software
and to a future evolution into a fully OO-based software [1].

To benefit from a transition from Fortran to C++ STAR needs an OO geometry model.
On the other hand, most of the detailed knowledge on the STAR detector is implemented into a
GEANT3 based simulation model. At the same time, we also want to be able to continue to use
the well understood simulation tools based on GEANT3.

This paper presents our experience with using a GEANT3 based detector model as the basis
for an OO model of STAR geometry.

2 Basics of STAR geometry model

STAR Detector is described in AGI - Advance Geometry Interface language [2]. This language is
an OO FORTRAN extension developed for the GEANT application. In order to be compiled the
AGI source code is translated into FORTRAN by a preprocessor.

AGI includes several “GEANT operators” supported by a dedicated Advance GEANT Inter-
face library. Maintaining the GEANT specific tables of materials, volumes, hit descriptors etc, and



automatically ensuring the internal consistency of most of the actual parameters of the GEANT
routines, it significantly reduce the amount of informations that the user should take care of and
provide the necessary robustness of the program.

To ensure the database access and tight control of data integrity, AGI includes data access
operators, which together with C-like structure definition allows to control the data transfer be-
tween program modules.

Many important implementation details - such as memory management, built-in data struc-
ture documentation and database access, coding rule reinforcement etc. - are done by AGI in a
way fully transparent for user.

3 ROOT access to geometry objects

Our first approach to the problem was to convert the complete GEANT volume hierarchy into a
set of ROOT [3] TObject classes. However ROOT model with only TNode / TShape classes is
not flexible enough, because it does not allow to position the same object many times. A detector
model build with only ROOT TNode/TShape takes significantly more memory than the original
GEANT model. This size may become even prohibitive in case one wants to save the geometry as
a persistent object.

To extend the ROOT classes functionality we have introduced a TVolume class, which
corresponds to a logical volume not assigned to any position in space, as it is used in GEANT.

Figure 1: TVolume Class Diagram

TVolume contains a singleTShape, but contrary to the TNode it does not know its own
position in space. At the same time TVolume inherits from StDataset class, developed in the
STAR framework as a named collection of objects [2], thus providing a functionality similar to
that of a GEANT3 volume.

Using the new class in conjunction with a universal GEANT3 volume decoder, developed
in STAR, we are able to project any GEANT3 geometry into a set of TVolume classes. The con-
version is done inside STAR ROOT-based framework “in flight”. This allows to run simulations
using GEANT3 while having a C++ presentation of the detector geometry.

The resulting geometry model is almost as compact as the original GEANT model and
makes it possible to create and export a persistent detector geometry description.



Figure 2: STAR detector model in ROOT browser// A name prefixed with an asterix stands for a TVolume-

Position object, while other names stand for TVolume objects.

However, its disadvantage for graphics is a need for many position recalculations for an in-
teractive display. To support fast graphics we convert this compact geometry into a full geometry,
where each TVolumeView represents an individual object, knowing its own position. A TVol-
umeView volume is similar to a TNode object, but does not have its own TShape object. Instead,
been derived from the StDataSet class, it can contain a collection of other TVolumeView objects,
positioned inside.

Since each object in this geometry model has its pre-calculated position, the presentation is
very efficient for graphics and graphical navigation.

In case of a complicated geometry and a limited memory this conversion is done only for a
part of the detector a user is interesting in.

Since TVolumeView does not introduce new shapes and features, TVolumeView is a utility
visitor class with a pointer to its parent TVolume object.

To navigate in both geometries one can use a generic StDataSetIter as well as a special
TVolumeView iterator. The last is derived from the generic one and inherits all features of the
StDataSetIter. In addition it provides some extra functionality, like a coordinate transformation
between any pair of nodes. It can be used for geometrical calculation, coordinate transformation
and geometry navigation. In particular, is is possible to delete a number of uninteresting interme-
diate TVolumeView classes from the original hierarchy without loosing the position information
for the remaining volumes. This allows to create a compact, but still a complete filtered TVol-
umeView hierarchy which is easier to draw and faster to navigate.

Because the StDataSet is supported by a generic STAR general data model [4], geometry
information can be recalled form any maker, save and restored by I/O “makers” in ROOT files,
MySQL database and a plain ASCII format.

Because of the inheritance from the ROOT classes, different graphic viewer can be used
to draw the resulting geometry. OpenGL, ROOT TPad and X3D are particular examples of such
viewers. This also allows to export geometry in postscript and GIF formats.



Figure 3: a part of the STAR detector geometry in ROOT

References

1 V.Fine at al, “Steps Towards C++/OO Offline Software in STAR”, CHEP’98, Chicago, Au-
tumn 1998.

2 A. Artamonov et al, “DICE-95”, internal note ATLAS-SOFT/95-14, CERN, 1995.
3 R. Brun et al, “The ROOT Framework”, AIHEPN-96, Lausanne, August 1996.
4 V. Fine et al, “STAR offline framework”, CHEP’2000


