
CLEO’s User Centric Data Access System

C. D. Jones1, M. Lohner1

Cornell University,USA

Abstract

When analyzing data, physicists want to spend their time studying the data instead of
learning about and writing and debugging code for the data access system. We have tried to
create a data access system that minimizes both the learning curve and code writing time.

The system is built on a simple data model we call the Frame. The Frame holds all the
information necessary to describe the detector at an instance in time. All data is treated equally
so a user can study changes in the accelerator’s beam current the same way they would look
for a decay in the collision events. In addition any piece of data can be retrieved from the
Frame in a type-safe manner by calling the extract function. This design means once a user
learns how to access one type of data, they can access any data.

The program Suez is used to provide a Frame to the user’s analysis code. Suez is a
lightweight program which can dynamically load modules that can be used to read/write data,
create new data, or analyze data. The flexibility and efficiency of the Suez system allows
us to use one program for all of our data access needs: software trigger, online monitoring,
calibration, reconstruction, Monte Carlo generation, analysis and event display.

Keywords: data access, user friendly, usability, Frame

1 Introduction

When analyzing data, physicists want to spend their time studying the data instead of learning
about, writing and debugging code for the data access system. We have tried to create a data
access system that minimizes both the learning curve and code writing time. We accomplished
this by creating a simple data model, a general purpose data access framework, easy to write and
auto-generated code, and an easy to use interface program.

2 Data Model

The first step we took in designing the data access system was to develop the mental model we
wanted the physicists to use when working with this system. We wanted the mental model to be
simple, general enough to encapsulate all data associated with the experiment (e.g. both event
and calibration data) and based on ideas physicists already understand. These requirements were
satisfied by the Frame-Stream model [1].

The essential elements of the Frame-Stream model are shown in Figure 1. The Frame-
Stream model presents data in a manner analogous to how data is collected in the online data
taking system. The online system provides streams of time-ordered data records. The Frame-
Stream model has the concept of a Record which holds data that are related by life-time. So the
Event Record holds all information that is relevant for the instant the event occurred, e.g. the raw
hits in the detector and the tracks reconstructed from those hits. A Stream is a time ordered set

Stream

Begin Run

End Run

Event

A

A

B

A

B C D E F G H I

C

CB

Time

Geometry A B

Calibration A B

Record

Frame

B

F

B

A

Figure 1: The Frame (shown on the right) is a collection of Records that describe the state of the CLEO

detector at an instant in time.

of Records, e.g. the Event Stream holds a time ordered collection of Event Records. The new
concept in this model is the Frame, which is a snapshot of the CLEO experiment at an instant in
time which is formed by the most recent Record in each Stream.

To do analysis in the Frame-Stream model, a physicist specifies algorithms he wants to
have run when new Records appear in particular Streams. For example, if a physicist wants to to
do an Event analysis, he would specify that his algorithm should be run whenever a new Event
Record appears in the Event Stream. Similarly, if a physicist wants to do an analysis of the
accelerator’s beam currents she would specify that her algorithm should be run whenever a new
Accelerator Status Record appears in the Accelerator Status Stream. This generality means that
once a physicist learns how to do one type of analysis (e.g. Event) they can directly use that
knowledge to do any other type of analysis.

3 System Concepts

The Frame-Stream model explains how physicists should think about the data and outlines how
analysis is done. The model does not say how a data analysis job is setup nor does it say how
data are actually created and transferred to the physicist’s algorithm. These items are defined by
the data access system. The goal of the data access system is to be able to handle any job that
requires access to the data so physicists only have to learn one system. The list of jobs includes:
physics analysis, event display, reconstruction, Monte Carlo generation, calibration, online data
monitoring and online software trigger. This goal was realized by making the data access system
a light-weight framework which uses modular components to do the work. Therefore physicists
construct their jobs by selecting the appropriate components to run in the data access framework.

A schematic overview of the concepts used in the data access system is shown in Figure 2.
There are two broad categories of components in the system: Data Providers and Data Consumers.
Data Providers put data into the Frame and Data Consumers read data from the Frame, therefore
the Frame works like a data bus. The data bus analogy is very apt because Data Providers do not
directly put their data into the Frame. Instead, when a Data Consumer asks for some data from the
Frame, the Frame finds the appropriate Data Provider and then gets the data from the Provider. In
this way the system only does the work necessary to access data when that data is requested.

There are two types of Providers: Sources and Producers. Sources are the origins of
Streams, that is only a Source can say when a new Record is supposed to appear. Most Sources

Event
Database

Constants
Database Pi0Finder RareBTracks

Frame

SelectBtoKPi EventDisplay Event List

Sources Producers

Processors Sinks

Figure 2: In the data access system the Frame works like a system bus. All communication between

components is handled via the Frame.

read their Records from a persistent store such as a file or a database, but we also have a Source
that gets Records directly from the online data taking system. A Producer is an encapsulation of
an algorithm (or related algorithms) that produces new data. For example, π0’s are found by a
Pi0Finder Producer. Producers usually need additional data to do their work; in the previous ex-
ample the Pi0Finder needs access to hits in the Calorimeter. A Producer accesses this information
using the Frame in the same way that Data Consumers access the information.

Data Consumers want to process all Records from particular Streams. There are two types
of Consumers: Sinks and Processors. Sinks access Records from the Frame and then write the
data in those Records out to a persistent store. Usually Sinks write out what Sources read in. A
Processor is a user algorithm that wants to run a calculation on all Records in particular Streams.
E.g. An Event analysis is a Processor that wants to get data from all Event Records.

A physicist’s data access job is composed of a series of Sources which supply the Streams
of interest, Producers which create additional data that is not stored in the Sources, Processors
which perform the physicist’s algorithms and finally Sinks which store the data for later use.

4 Writing Code

Physicists want to spend their time writing code to implement algorithms and get frustrated if they
have to spend large amounts of time writing and debugging code to access data.

To reduce the burden of using the data access framework, we provide skeleton code genera-
tion programs. For example, if a physicist wants to write a new Processor named MyProc, all they
have to do is type “mkproc MyProc” and the proper directory structure, Makefile and skeleton
source code files are generated. The physicist merely has to write her algorithm in the member
function skeleton that is provided. The only data access framework code the physicist might write
is one line if she wants to process a Record other than the Event Record, because the Event Record
code is automatically written by default. To do this a physicist adds to her Processor’s constructor
code that sets which member function to call when a new Record appears in a certain Stream, e.g.

bind(Stream::kGeometry, &MyProc::geometryChanged);
We wanted to make sure that it is impossible for physicists to access non-existent or stale

data. To that end, physicists can only access data by calling a function that reads the data from a

Record. If the data is not available, a C++ exception is thrown. We have found that throwing an
exception is preferred to returning a null pointer because physicists often do not check the validity
of the returned pointer. In contrast, only if a physicist’s code can deal with missing data (which is
rare) do they need to write code to catch an exception. Any non caught exception will be caught
by the data access system and a helpful error message will be printed before exiting gracefully.
Therefore diagnosing a problem is much easier with exceptions than with null pointers.

To access data one must do the following
MyProc::event(Frame& iFrame) {
...
FAItem< EventHeader > eventHeader;
extract(iFrame.record(Stream::kEvent), eventHeader);

FAItem<> is a smart pointer to a singly occurring item where the template type is the type of data
the physicist wants to obtain. We use FAItem<> so that no one is tempted to delete data they have
extracted. extract is a templated function which extracts the requested data from a Record in a
type-safe manner. Using a templated function means one only has to specify the type of data to
extract when one defines the variable to hold the data.

To extract a table of data, say a list of Tracks, one has to write:
FATable< Track > tracks;
extract(iFrame.record(Stream::kEvent), tracks);

FATable<> is a smart pointer for our own container class FAPtrTable<>. We have our own
container class to enforce our policy that every multiply occurring object must have a unique
identifier. E.g. each Track in a FAPtrTable<Track> has its own unique number. This allows a
physicist to say “track 4 is a muon” and everyone will agree on which track is track 4 even if they
have taken some tracks out of the master list and placed them in a different container.

5 Running a Job

The user interface to the data access system is provided by the program Suez [2]. Suez provides a
command line interface with a Tcl interpreter and provides tab completion and command history
similar to most Unix shells. Suez allows either static or dynamic linking of the components.
Dynamic linking has been extremely successful, it has allowed users to reduce linking time from
potentially minutes to just seconds.

6 Conclusion

From the feedback we have received from our users, it appears that the system is easy to learn to
use. After a short initial introduction to the system, users tell us that it is very intuitive.

The biggest usability problems remaining are: users do not know what data types are avail-
able to extract from the Frame and users do not know which components need to be loaded to
make their jobs run. The former problem we are correcting by providing better documentation.
The latter problem we are correcting by determining exactly what types of data each component
produces and consumes and then using that information to help physicists assemble their jobs.

References

1 P. Avery, C.D. Jones, M. Lohner, S. Patton, “Design and Implementation of the CLEO III
Data Analysis Model”, CHEP’97, Berlin, Spring 1997.

2 M. Lohner, C.D. Jones, P. Avery, “SUEZ: Job Control and User Interface for CLEO III”,
CHEP’98, Chicago, Autumn 1998.

