
Event Logging and Distribution for the BaBar Online System

S. Dasu1, T. Glanzman2, T. J. Pavel2y

For the BaBar Prompt Reconstruction and Computing Groups

1 Department of Physicsz , University of Wisconsin, Madison, WI 53706
2 Stanford Linear Accelerator Center, Stanford, CA 94309. x

Abstract

We discuss the BABAR experiment software and computing infrastructure used for event
logging and distribution to prompt reconstruction system. The raw data for typical BABAR

events is about 30-50 kB per event. During the data taking a 100 Hz stream of events is
collected from a farm of 32 online computers amounting to about 3-5 MB/s. A robust and
efficient multi-threaded, TCP/IP based logging manager software was written to serve this
purpose. Monitoring of the status of the program is achieved using CORBA. The same pro-
gram is also used to distribute the logged events to a larger farm of 200 unix processors to
process data promptly. This prompt processing involves full reconstruction and calibration
programs before final storage in the Objectivity database. We describe the performance of
underlying hardware and software, and address scalability of the program.

Keywords: TCP/IP, CORBA, Network, Computer Farm, Logging

Introduction

The BABAR experiment [1] at the Stanford Linear Accelerator Center is built to study the par-
ticle and anti-particle asymmetries. These small asymmetries due to a phenomenon called the
CP violation, are hitherto observed only in the K mesons are also expected to be observable in
the B mesons as well. Both validation of the Standard Model explanation for the CP violation
phenomenon and searches for beyond the Standard Model explanations require the CP violation
data in the B meson system. The observation and study of the CP violation phenomenon in the
B meson system requires production of at least 109 electron-positron collision events per year at
the �(4S - 10.58 GeV) resonance. These events are measured by the BABAR experiment with
high precision, using its silicon vertex detectors, drift chamber, ring imaging Cherenkov detector,
CsI crystal calorimeter and resistive plate chambers. The raw data for typical events from these
sub-detectors adds up to about 30-50 kB per event. During the data taking the collected stream
of data from the detector is expected to run at about 3-5 MB/s. A robust and efficient computing
system is required to receive this data-flow and reconstruct the events before their final storage,
with raw and reconstructed data, in an object database. These data, accumulated over years, are
analyzed by physicists to study the B meson physics.

The data from the BABAR sub-detectors are collected by custom VME electronics and
presented to the data acquisition system using a set of generic read out modules via VME based
PowerPC processors. These processors running VxWorks operating system communicate outside
the crate using Fast Ethernet interfaces. This data-flow system and its software are described in

y On leave from Stanford Linear Accelerator Center.
z This work was supported in part by Department of Energy contract DE–FG02–95ER40896.
x This work was supported in part by Department of Energy contract DE–AC03–76SF00515.

detail elsewhere [2]. The data from various subsystem processors are assembled into a full event
on a farm of Unix computers. These data arriving at a combined 2 kHz rate into the farm are
reduced to a 100 Hz flow by online event processing framework [3] that supports level-3 trigger
software [4]. These 100 Hz events are archived for subsequent detailed analysis.

Although each event is independent of the others, the environmental information, e.g., for
calibrating the drift time in the chambers, requires events contiguous in time. Therefore, it is
important to collect these streams of events from various computers into a single stream to make
collections of events spanning about an hour. These event collections for each run are fully recon-
structed to determine calibration constants for subsequent data processing. The “prompt recon-
struction” of these events requires running large and complex software programs [5]. It provides
physicist early access to the fully reconstructed events enabling timely publication of results. Al-
though the reconstruction is expected to be prompt, a latency of few hours has to be tolerated.
Therefore it is necessary to provide a data buffer to separate these large programs from the data-
flow software. The size of these one hour data sets is several giga-bytes strongly suggesting disk
file buffers. These raw data files are also archived in the HPSS mass storage system so that later
reprocessing of the data can also be done. In this paper we describe the software, the logging
manager, that collects the events from several Unix computers to make these “intermediate” event
files and distributes those events to the processor computers for reconstruction and final archival.

System Implementation

CISCO
Catalyst

5500

CISCO
Switches

Sun
Enterprise

450

VME VME VME ... 24 Data Acquisition Crates

Sun Ultra 5

Sun Ultra 5

Sun Ultra 5

Sun Ultra 5

Sun Ultra 5

Sun Ultra 5

Sun Ultra 5

Sun Ultra 5

... 78 Farm Nodes

RAID Disk

Sun Ultra 5

Sun Ultra 5

Sun Ultra 5

Sun Ultra 5

Sun Ultra 5

Sun Ultra 5

Sun Ultra 5

Sun Ultra 5

Sun Ultra 5

Sun Ultra 5

Sun Ultra 5

Sun Ultra 5 ... ~300 Farm Nodes

Sun
Enterprise

450

Sun
Enterprise

450

Sun
Enterprise

450

Sun
Enterprise

450

... ~15 Objy/HPSS
 Servers

HPSS Tape

RAID Disk

100 Base T

1000 Base FX

1000 Base LX

~ 1 km

SLAC Computing Services

BaBar Interaction Hall

Level 3 Nodes

Prompt Reconstruction Nodes

BaBar/SLAC
Computing
Infrastructure

Objectivity Database

Raw Data Files

Logging Managers for
Event Logging & Distribution

Figure 1: Diagram of the BABAR /SLAC online and prompt reconstruction computer farms showing the

VME PowerPC front-end computers, the online farm of Sun UltraSPARC computers, the Sun Enterprise 450

server with the intermediate store disk array and the SLAC computer center database servers and worker

nodes, all connected using Cisco Catalyst 5500 switches.

The hardware platform for the BABAR /SLAC computer farms is illustrated in Figure 1. The VME
computers and the individual farm nodes have Fast Ethernet (100Base-T) connections to the Cisco
Catalyst 5500 switch. The Online server computer, where the logging manager runs, supports an
array of high performance RAID disks for intermediate file storage, and is connected to the online
switch using two Gigabit Ethernet (1000Base-SX) links. One of the two network interfaces is
reserved for communications between VME processors and the server and the other is used for all
other communication including event logging and distribution. A separate farm of Unix computers
in the SLAC Computing Services department support the BABAR experiment for running both
reconstruction software and final data archival in a HPSS based Objectivity database. The SCS
farm is connected to the BABAR online switch using a Gigabit Ethernet (1000Base-LX) link.
The choice of computers and IP interconnects are based on careful evaluation of the commercial
technology [6] considering both performance and cost issues.

Several Unix processes and their IP or shared memory based communication links involved
in orchestrating the online platform to enable the intermediate file storage and data processing
before the final storage in Objectivity database. The reliable server processes run on the online
server computer and command the daemon processes on the rest of the farm to perform specific
tasks, e.g., level-3 trigger or prompt reconstruction (PR). The logging manager processes collect
or distribute the data using TCP/IP sockets for high performance, whereas the monitor and control
data is exchanged using CORBA. When the processes are co-resident in a memory space, e.g., PR
daemon and PR framework, shared memory is used to make the best use of the system resources.
The details of the prompt reconstruction [5] are described elsewhere. Here, we report only on the
Logging Manager process.

The software is built using object oriented design. The development phase involved mod-
eling the objects using Unified Modeling Language. Class diagrams and the use case diagrams
were particularly useful for communication among the development team members. The C++
Standard Template Library provided many useful constructs that would have otherwise involved
considerable amount of programming on our part. In order to exploit the multi-thread and socket
programming features while maintaining object oriented design we selected the ACE wrapper li-
braries and TAO CORBA implementation [7]. We have customized TAO CORBA initialization
so that it runs with appropriate multi-thread policy, a single name server, etc.. This customiza-
tion package also provided simpler interface to underlying CORBA calls and provided CORBA
name space maintenance. We have also put together a package to provide large file support with
improved performance by implementing custom C++ iostream streambuf class.

Logging Manager

The logging manager application is a multi-threaded program implemented with one thread that
provides CORBA interface for monitor and control, and a separate thread for each input and
output client. This program receives events through input objects, maintains a queue of current
and pending events and delivers events out through output objects. Three types of input and output
classes are available: socket, CORBA and file. The design is such that any number and type of
input or output objects can be connected at any time. The setup of the program is accomplished
through CORBA calls. The TCP/IP socket or the file setup information is exchanged through this
mechanism. The mutex-locked queue status and the input and output status lists are available for
monitoring. The normal mode of operation is of two types, event logging and event distribution,
which use intermediate disk files to transfer events.

Event Logging

For event logging, several online event processing daemons will connect to the logging manager
and send events through the socket interface. These events are written to the disk files. There is
only a small amount of processing involved to handle a selection of special input “events”, begin
and end run. The file opening and closing at appropriate time intervals is controlled through these
events in the data stream itself. We have typically used 32 Sun Ultra-5 machines on switched
100Base-T network to perform level-3 algorithm and write data to logging manager running on
a Sun 4 CPU Enterprise 450 with a large RAID disk and gigabit ethernet interface to the switch.
The file output buffers are setup to use large 1 MB read/write buffers achieving about 35 MB/s
throughput to the disk. We use 32 kB TCP socket send/receive buffers to optimize network perfor-
mance. The aggregate throughput to logging manager scales up to about 1 kHz of 35 kB events,
i.e., 35 MB/s, with a factor of 10 safety margin. CPU usage at normal 100 Hz operation is less
than a 10 % of the machine capacity.

Event Distribution

For prompt reconstruction the events are distributed from a selected disk file to several prompt
reconstruction daemons via socket interface. On this socket link there is bidirectional commu-
nication to ensure that every event is processed and safely logged to the object database. The
objects needed for the constants calculation are accumulated from event data on several prompt
reconstruction computers. Only a small amount of processing is involved to drive the prompt
reconstruction framework state machine to allow processing these database accumulations from
various daemons and constants calculation. All of this support is handled by special marker events
inserted into the data stream by the logging manager. The output nodes can join the processing
at any time during the processing as the driving of state transitions is done on per output thread
basis. Multiple events can be requested by any output link before they acknowledge that the events
are processed. Logging manager stores the status of these events so that any events from crashing
nodes can be redistributed to other working nodes. To avoid a pathalogical event from killing all
the processes, the particular event that is responsible for killing the processor node is marked as
such and not redistributed. CORBA interface allows monitoring of the run and output node status.
For the prompt reconstruction case, the logging manager has one input file object and up to 200
socket output objects each running in a separate thread. We have not noticed any difficulty in get-
ting sufficient resources to the input file thread when all 202 threads are running. Test runs have
yielded throughput of about 400 Hz of 35 kB events, i.e., 14 MB/s including the event acknowl-
edgement handshake. For the production running we allow large granularity, about 3 minutes,
database commits, requiring that several hundred megabyte event buffer. In this case, the logging
manager was able to supply events at the rate of 125 Hz without throttling input to any nodes.

Conclusions

The commodity Fast Ethernet technology suffices for a majority of our online links and is a good
choice considering cost issues. The choice of Gigabit Ethernet for our most demanding links was
also appropriate. The object oriented paradigm that we adhered to in building our software enabled
its implementation in a timely fashion with good reliability. The ACE and TAO packages make an
excellent freeware choice in building object oriented applications in a client-server environment.
We also found that the C++ Standard Template Library to be valuable. The performance of this
system is scalable well beyond current BABAR requirements.

References

1 The BABAR Technical Design Report, SLAC-R-95-457, 1995
http://www.slac.stanford.edu/BFROOT/doc/TDR.

2 The BABAR Data Acquisition System, I. Scott et al., CHEP 1998.
3 The BABAR Online Computing System, G. Dubois-Felsmann, Paper No. 374, CHEP 2000.
4 Architecture of the BABAR Level-3 Software Trigger, E. D. Frank, CHEP 1998.
5 BABAR Prompt Reconstruction, T. Glanzman, Paper No. 288, CHEP 2000.
6 Network Performance Testing for the BABAR Event Builder, T. J. Pavel et al., CHEP 1998.
7 An Architectural Overview of the ACE Framework, D. C. Schmidt,

http://www.cs.wustl.edu/~schmidt, USENIX login magazine, November, 1998. and The De-
sign of the TAO Real-Time Object Request Broker, D. C. Schmidt et al., Computer Com-
munications, Elsevier Science, Volume 21, No. 4, April, 1998.

