
Application of Java and CORBA to Distributed Control
and Monitoring Applications in the PHENIX Online Control System

E. Desmond1, S. Adler1, Lars Ewell1, J. Haggerty1, Hyon Joo Kehayias1, S. Pate2, Martin
L. Purschke1, R. Roth1, C. Witzig1,

1 Physics Department, Brookhaven National Lab,USA
2 New Mexico State University, Las Cruces NM,USA

Abstract

The integration of Java with CORBA to achieve platform independent distributed control
and system monitoring applications in the PHENIX Online Computer System will be pre-
sented. The PHENIX Online Computer system is distributed over the Solaris, NT, Linux, and
VxWorks operating systems. These environments run on Sun SPARCstation, Pentium and
Power PC architectures respectively. CORBA has been used extensively in this environment
to provide distributed access among these divergent platforms.

This paper will present the experiences gained and the techniques, which were developed
in applying these two technologies to the PHENIX, distributed control environment. Tech-
niques used for passing complex data types between clients and server applications will be
presented. Performance and Security issues of Java based applications and applets and their
relevance to the control environment of large-scale detector requirements will be discussed.
Java provides the promise of platform independence by executing bytecode in a uniform Vir-
tual Machine. The OMG CORBA IIOP communication protocol was developed to provide
seamless communication of applications developed with different ORB implementations. The
experience and degree to which these promises of ORB interoperability, platform indepen-
dence and seamless communication in the PHENIX control and monitoring applications will
be evaluated

Keywords: Java,CORBA,control system

1 Introduction

Java is a highly productive development environment for building robust, extensible enterprise
wide applications. The rich set of class libraries for display, and its clear object oriented archi-
tecture design make Java a highly desirable framework for the development of online control and
monitoring applications. CORBA is a framework for the development of platform independent dis-
tributed computing applications. It provides a set of components and protocols that allow the de-
velopment of platform independent and language independent access to remotely distributed com-
ponents. By combining these technologies together, enterprises can potentially develop portable,
platform independent distributed applications

2 Use of Java in the PHENIX On-line System

In the PHENIX online system, Java is being used extensively for the development and implementa-
tion of the major detector control and monitoring applications. These applications include the run
control application which is the main user interface for configuring, controlling and running the
PHENIX detector. Other user interface applications include programs for diagnostics and control
of various hardware components, including the embedded data collection modules (DCMs), the
front end signal processing modules, the event builder, level one electronics. Other applications

currently in development including those for system partitioning and error logging and display,
will similarly use this technology.

While Java is the language of choice for client side user interface development, CORBA
is the standard mechanism for communication among distributed components in the PHENIX
online system1. The server and object implementation code is written in C++. Servers have been
implemented on sparc, Pentium and Power PC platforms which are running the Solaris, NT and
VxWorks operating systems, respectively. In addition, the PHENIX counting house has a number
of Linux based Pentium system from which operators will communicate with the control system.
All server application objects were compiled from IDL files with IONA Technologies Orbix2.3c
compiler. IONA’s OrbixWeb version 3.2 is being used for IDL compilation to Java code2. The
goal was to develop Java based application which could execute on these different platforms and
would transparently communicate with all PHENIX servers. This paper describes the extent to
which that has bee achieved

3 Portability

With the introduction by the Object Management Group (OMG) of the CORBA 2.0 specification,
the Internet Inter-ORB Protocol (IIOP) became part of the CORBA specification. IIOP is a special
case of the General Inter-orb Protocol (GIOP) which is implemented on top of TCP/IP. In addition
to IIOP, the OMG also specified a standard object format which is also required for ORB inter-
operability. This object format is called the Interoperable Object Reference (IOR). The IOR is a
representation of an object which contains all the information which is necessary for a application
to connect to an object and make a remote invocation on the object’s methods. The IOR encodes
the type of object, the object host and port number of the server for the object, and an object key
which is used by the server to locate the object. By using the IOR over IIOP, objects can com-
municate with objects which were compiled from a IDL compiler from different ORB vendors.
In addition, with these protocols it is not necessary to run a vendor’s ORB daemon on the client
host3.

In order for a Java client application to gain access to a CORBA compliant object, the IOR
must be made available to make an initial connection into a CORBA system. Once a client has
a reference into a server, this server can make available other object references. In the PHENIX
online system, this server is a Naming Service. Objects in this system register themselves with
the Naming Service. Client applications then obtain the object reference for a given object name.
The reference to this server is made available to Java clients by having the Naming Service create
a stringified object reference of itself. This is an object reference which is converted to an ASCII
string which can then be written to a file, database or made available by some other means. Once
this is done, Java based client applications read the file, reconvert the string to an object reference,
and invoke the desired method on the object.

3.1 InterORB Connectivity

The example code below in Listing 1 shows how Java client applications, which are compiled
from ORB vendors other than IONA, reference objects from the PHENIX online system. In this
application, the IOR is first read from a file and is then converted to an object reference with

1Desmond, Ed.“PHENIX On-Line Distributed Computing System Architecture“, CHEP 97, Berlin, Spring 1997.
2Orbix 2.3c; IONA Technologies LTD; The IONA Building 8-10 Pembroke Street, Dublin 2, Ireland http://www.

iona.com
3Michi Henning and Steve Vinoski. 1999. “Advanced CORBA Programming in C++ “, Reading, MA: Addison-

Welsey

the string to object(String ior) method. Once this is operation is complete, the reference must
be narrowed to the appropriate object reference type. Finally, the desired method on the object
is invoked. This mechanism has proven itself to effectively provide access to PHENIX object
references from Java applications which are compiled with both the Visibroker IDL compiler4,
and the Omnibroker IDL compiler. Java applications which are generated using the Visibroker
IDL compiler on NT, and the Omnibroker IDL compiler on Linux have successfully been able to
gain access to IIOP compatible servers in the PHENIX online system.

There are a number of limitations to using this method to interORB connectivity that must
be kept in mind. First, the client application must know the desired object type to which the
reference must be narrowed, and ,for static binding, that the client application have knowledge
of the object type at compile time. This requires that the client have access to the IDL file in
which the object type is defined. Moreover, when an object reference is generated it contains
information about the server from which the object is accessible. This server information includes
the port number which the server is listening for CORBA connections. If the server was stopped
and restarted since the object reference was written to the file, the port number on which the server
is listening for connections may have changed. In addition, at present, the version of Orbix which
is currently being run on processors which are running the VxWorks operating system, does not
yet support IIOP. While these servers are accessible to Java applications which are run on all the
above platforms, the Java generated code must at present be compiled with IONA’s OrbixWeb IDL
compiler.

Listing 1.
// initialize the orb omg.org.CORBA.ORB orbRef = ORB.init(”phoncs0.phenix”,null);

Object objRef; nameserv nsRef;
// open the file ”nsref.dat” in the directory CUTILITIES/src // convert the string which was

read to an object reference // and then invoke the method getId(long id) on the reference
// open the text file
byte buff[] = new byte[1000];
try InputStream fileIn = new FileInputStream(”nsref.dat”); int i = fileIn.read(buff);
catch (FileNotFoundException e) System.out.println(”Could not open file nsref.dat ”);

catch (IOException e) System.out.println(”IOException ” + e.toString());
// first convert the byte array to a string object String iiopStrRef = new String(buff);
// convert the string to a reference objRef = orbRef.string to object(iiopStrRef);
// now narrow the reference to a nameserv object nsRef = nameservHelper.narrow(objRef);
System.out.println(”ACCESS OBJECT NameServ”); // finally invoke a method on the ob-

ject
int myid = 0;
org.omg.CORBA.IntHolder intHolder = new IntHolder(); myiiopRef.getId(intHolder);
myid = intHolder.value;
System.out.println(”Id of nameserv = ” + myid);

4 Performance

4.1 Time to initialize connection

When considering the use of Java for monitoring and control applications, performance becomes
a relevant issue. Accordingly a series of performance measurements were made. These measure-
ments compare the relative performance of equivalent functions in client applications, which were

4Visibroker; Inprise; 100 enterprise Way, Scotts Valley, CA (http://www.inprise.com

written in Java and C++. The first measurements are the time it took to establish a connection
between Java and C++ client applications and CORBA servers5. In the first case both clients were
running on the same Solaris platform as the server. In the second case, both client applications
were run from a remote NT platform. The results of these measurements is shown below in Table
1.

Table I: Connect time from client to C++ Server
Client Platform Java Client C++ Client
Solaris (local client) 406 ms 139 ms
NT 915 ms 60 ms

As can be seen, the Java client applications take considerably longer to establish a remote
connection. This time does not measure the time it takes for a Java GUI client to paint its display
on a console terminal. This paint operation, in general, takes approximately 6 seconds, depending
on the complexity of the display. While the connect times are considerably slower for Java than
for C++, in general, these connections are made only once when a client first connects to a server.
Thus they are not prohibitive for use in a control environment.

4.2 Data Throughput

A second set of measurements were made to measure data throughput between Java clients and
CORBA servers5. In these tests different data types were first sent one way from client to server
and then the data was both sent and returned from the server to the client. The data types var-
ied from Java native primitive data types to sequences of these types, to structures and finally
sequences of structures. In one case the client was written in Java, while in the second case the
client was written in C++. In both cases the server was the identical server which was written in
C++. In all cases 100 trials were made for each test and the performance was averaged over those
trials. The server always ran on the same Solaris Enterprise 4000 sparcStation. Table 2 below
shows the averaged elapsed time in milliseconds and throughput in bytes per second.

Table II: Margin specifications
Data type Java client C++ client
One way no params 2.6 ms .7 ms
One way primitive 1.4 ms 17857 bytes/sec .7 ms 35714 bytes/sec
Oneway structure 1.31 ms 19083 b/s .7 ms 35714 b/s
Oneway primitive sequence 4.6 ms 543478 b/s 3.71ms 673854 b/s
Oneway struct sequence 4.91 ms 509164 b/s 4.31 ms 580046 b/s
Oneway struct array 4.71 ms 21231 b/s
Twoway primitive 6.21 ms 16103 b/s 4.71 ms 21231 b/s
Twoway structure 4.21 ms 23752 b/s 4.31 ms 23201 b/s
Twoway primitive sequence 23.33 ms 428632 b/s 20.93 ms 477783 b/s
Twoway structure sequence 28.04 ms 356633 b/s 24.91 ms 400962 b/s
Twoway structure array 29.44 ms 339673 b/s 25.54 ms 391542 b/s

NOTE: * indicates that a sequence is equivalent to an array in Java and so this measurement
is redundant.

5IONA Technologies LTD; The IONA Building 8-10 Pembroke Street, Dublin 2, Ireland http://www.iona.com

Generally the performance in transferring data between C++ clients and servers is faster
than in Java. However, for control and system monitoring applications, Java has proven to provide
completely adequate performance.

5 Security

At the present time, all Java based client programs are being developed as applications only. There
are two reasons for not developing Java client applications which may run as applets. First is that
when an applet runs in a browser, it is subject to all the restrictions that the security manager ap-
plies to ordinary applets. That is, the applet may only access those resources from the server on
which it originated. Thus to access other remote servers, via CORBA, the operation would have to
request permission from the security manager. Each applet must, in addition have an authentica-
tion certificate which is verified by the server. These restrictions introduce additional complexity
to Java application development. Secondly, there have been a number of recent security breaches
at Brookhaven National Lab as well as at other National Labs. These intrusions include incidents
of hacker infiltration of workstations and the introductions of viruses. Accordingly it has become
policy that there be no control of the PHENIX facility from remote locations. As only monitoring
operations would be permitted from remote sites, the additional effort in supporting the ability to
run applets, while at the same time restricting their access to monitor only functions would require
development resources and effort which we do not presently have available.

6 Passing complex data types from Java clients

In Java, all parameters that are passed to methods are passed by value. Modified parameter values,
which are returned through a function argument, must be contained in holder objects. When this
is done the holder object reference is passed by value while the contents of the object may be
modified. The same rule applies to remote operations that take place via CORBA calls. Thus all
return parameter values, from remote CORBA objects, must be included in a wrapper function.

For each user defined interface and type definition which is included in an IDL file, the
IDL compiler will generate three classes, an interface class, a holder class and a helper class. The
interface class provides to the client the interface to the proxy class of the remote object. The
helper class provides helper functions to allow binding to remote objects and to insert and extract
user defined types from CORBA type Any data types. The holder classes provide the wrapper in
which to return modified values to remote clients. The following example shows how an IDL file
defines an unbounded sequence of strings which is then retrieved from a remote object.

The IDL file contains the following definition definition:
typedef sequence (String) seqString ;
interface ns f void op(out any data);
g;
This results in the creation of a Java class called a seqStringHolder. To return a sequence

of strings from a remote member function the following code sequence is required: The following
code snippet show how this code is used in a Java application;

SeqStringHolder stringholder = new seqStringHolder();
// get reference to nameserver
nsRef.op(stringholder);
// extract the sequence of strings
int strlength = stringholder.value.length;
String [] mystring = stringholder.value;

for (int I = 0; I ¡ strlength ; i++)
System.out.println(”string” + i + ” = ” + mystring[i];
CORBA provides a mechanism for passing arbitrary data types between distributed compo-

nents. This mechanism is implemented with the pseudo-object type TypeCode. A pseudo-object
type is a type that is used by an ORB implementation when mapping IDL to some programming
languages. The type TypeCode is used to describe at runtime the contents of a type any. Java
based client applications may insert any user defined data type into the any data type through the
use of helper classes which are generated by the IDL compiler and are defined for every user
defined type. Applications can interpret at runtime the data type that is included in the type any
by invoking the type method on the data type any. The type method returns the typecode of the
included type. The following code example illustrates how a sequence of Strings is returned from
the PHENIX Naming Service component to a Java application.

// IDL file
interface nameserv f
void getNsObjectList(out Any namelist);
g;
// Java
// Client.java
org.omg.CORBA.AnyHolder anyholder = new AnyHolder();
Any rtnany = new IE.Iona.OrbixWeb.CORBA.Any(IE.Iona.OrbixWeb. CORBA.IT ORBIX OR KIND);

String[] namelist;
try f nsRef.getNsObjectList(anyholder); g catch (SystemException se) f System.out.println(”get

any error” + ”Unexpected exception:” + se.toString ()); return; g
// extract the any from the anyHolder
try f
rtnany = anyholder.value;
// test data for a returned sequence.
if (rtnany.type().kind().value() == TCKind.tk sequence.value()) f
namelist = seqStringHelper.extract (rtnany);
// print out the returned list of strings listsize = namelist.length;
for (int index = 0 ; index ¡ listsize ; index++)
System.out.println(”NL[”+index+”] = ” + namelist[index]); g
g catch (org.omg.CORBA.TypeCodePackage.BadKind kse)
f System.out.println(” bad typecode ”); g
g // end sequence
The above mechanism has proven to be an easy to use and successful mechanism of passing

complex user defined data structures between Java client and C++ server applications. While only
simple structures have been shown here, in practice more complicated nested structures containing
unbounded sequences of strings, octets and structures have been successfully transmitted.

7 Conclusion

Java has proven to be an effective framework for the development and implementation of control
and monitoring applications. It has been successful in allowing application code to be developed
and ported seamlessly between different platforms including Solaris, NT and Linux. Security in
Java clients remain as much a policy issue and issue in development effort than an intrinsic techni-
cal problem. Performance is an area which could be an issue. However, for detector configuration,
control and component monitoring, the performance has proven to be adequate.

