
An implementation of a reliable message broadcast for the CMS event
builder system

I. Suzuki1, M. Litmaath1, V. O’Dell1, S. Pavlon2, K. Sumorok2

1 Fermi National Accelerator Laboratory, USA
2 Massachusetts Institute of Technology, USA

Abstract

The CMS DAQ system utilizes a dedicated network to distribute commands to all the
DAQ units responsible for reading out the detector Front-Ends. This network must have
low latency (�ms) since it must signal the presence of a new event (at a maximum rate of
100 kHz) well before the Front-Ends run out of their limited buffering capability. A reliable
broadcast functionality is necessary for this. Although many implementations of reliable
broadcast/multicast protocols exist and are available, the requirements of total reliability and
short latency have kept us from using any of these. A NACK-based reliable broadcast protocol
with Forward-Error Correction was implemented on a system of PCs connected via Fast-
Ethernet. The implementation was tested in various system configurations and proved its
technical feasibility.

Keywords: CMS, Event Manager, reliable broadcast, UDP

1 Introduction

The design of the trigger and data acquisition system for the CMS experiment[1] is diagrammed
in Fig. 1. The event manager (EVM)[2] controls and monitors all event traffic in the bottom half
of the data acquisition system, which is a large network switch fabric surrounded by hundreds of
readout units (RUs) and builder units. One of the functions of the EVM is to distribute the first
level (L1) trigger decision to the RUs reliably via the readout control network (RCN). The L1
trigger information is utilized by RUs to read buffered data from the front-end modules, that are
named detector dependent units (DDUs).

The RCN should support reliable broadcast or multicast. The L1 trigger is expected to
accept events at a rate of up to 100 kHz. Assuming the size of the information sent via the RCN to
be three 32-bit words per L1 accept, the required bandwidth is 96 bits�100 kHz � 10Mbps. The
required latency for a transaction is 10�s when the EVM sends packets on every L1 accept. It is,
however, difficult to broadcast a message reliably within such a short time period using currently
available commercial networks. Therefore, many (O(100)) messages are packed and sent out as
one packet. The buffer depth in the DDUs gives the actual limit for the latency. The current CMS
design expects the depth to be about a thousand events. Then, to keep the buffers only halfway
filled, less than 5ms latency is required.

The design of the final EVM and RCN system has not been determined yet. Developments
of prototype systems and extensive performance studies are necessary to finalize the system.

2 Protocol on the RCN

Many reliable broadcast/multicast protocols have been proposed or implemented[3]. Most of them
aim to serve multimedia (audio/visual) data streams, which do not need total reliability, i.e. some

Run
Control

Level 1
Trigger

Filter Column

Readout Column

Event Manager

DAQ main subsystems

RCN

BCN

Mon
Ctrl

BM

RM

FES FrontEnd System
FED FrontEnd Driver
RU Readout Unit
BU Builder Unit
FU Filter Unit
EVM Event Manager
RM Readout Manager
BM Builder Manager
RCN Readout Control Network
BCN Builder Control Network
Ctrl Builder Control port
Mon Monitor port

Out

Ctrl

FED

RU
Readout Unit

In
Mon

 Builder Networks

In

Out
FU

BU

Builder UnitCtrl Mon

Computing Services

FrontEnd System

Figure 1: CMS trigger and data acquisition system

information may be lost. Some of them are totally reliable, but are not fast enough. The protocol
used on the RCN must be totally reliable and have a limited latency of several milliseconds at
most. We propose a preliminary protocol specialized for the RCN. It is a combination of popular
techniques[4] and a simple design.

Key features of the protocol are;
� NACK based,
� Receiver side packet loss detection,
� Redundant traffic to reduce packet repairs, and
� ACKs from a few receivers as a pacemaker.

ACK(Acknowledge)-based mechanisms, in which each receiver sends back an ACK packet
in principle for every data packet, are not applicable to the RCN. A flat network would be flooded
with ACK packets and a tree-based ACK mechanism introduces a significant latency. In a NACK
(Negative ACK)-based mechanism, a receiver sends back a repair request only when it detects
packet losses or unrecoverable corruptions.

Data corruptions inside a packet are detected utilizing CRC (cyclic redundancy check-sum)
words included in each packet. Packet losses are detected as jumps between the sequential num-
bers of adjacent packets. The sequential number is managed by the EVM in our case.

With these mechanisms the data can already be transmitted reliably. The process of re-
pairing packets, however, is expensive in terms of latency. Therefore a Forward-Error Correction
(FEC) technique is introduced to keep the packet retransmissions as rare as possible. In this
scheme the EVM sends redundant data and any receiver can reconstruct the original data allowing

for packet losses up to the redundancy limit. A simple example is to add one extra packet, that is
the XOR of the original packets, for every three data packets. In that case the receiver misses the
whole packet sequence only when there are two or more packets lost from these four packets. Any
fraction of redundancy is possible regarding the network reliability.

The last point is congestion control. There is no means to detect buffer overflow on the re-
ceiver side, because hardware flow control is not possible (or not practical) in broadcasts. Keeping
the transfer rate below a level acceptable for the RUs is necessary to avoid buffer overflows and re-
sulting NACK floods. A possible method is that the EVM waits for an ACK packet from only one
or a few RUs and sends out the next packet after receiving it. Using this method the EVM applies
an optimized delay between sends. Having the EVM sleep through a kernel system call cannot be
used to control the delay with adequate precision. Fig. 2 illustrates the protocol described above.

EVM RU EVM RU

(packet1)
(packet2)
(packet3)
(packetX)
ACK

(packet1)
(packet2)
(packet3)
(packetX)
ACK

(packet1)
(packet2)
(packet3)
(packetX)

NACK n

Sequence n

Sequence n+1

Sequence n

(packet1)
(packet2)
(packet3)
(packetX)
ACK

Sequence n

Lost

(packet1)
Sequence n+1

(packet2)
(packet3)
(packetX)
ACK

Figure 2: Sequence diagram of the RCN transactions.; Left: Normal handshake with ACK packets.; Right:

Packet repair. Packet loss detected by the first packet in the next sequence. A RU requests the missing

sequence by NACK and repair packets are sent back.

3 Implementation and benchmark tests

Each mechanism in the protocol described in the previous section has its advantages and disad-
vantages on performance and stability. We made test programs on a system of PCs connected via
Fast-Ethernet to evaluate the protocol. The PCs were running the Linux OS. UDP/IP was used as
a base protocol and the reliable broadcast protocol was implemented on top of it. This test setup
required from us a minimal cost and effort while it maintained a reasonably realistic environment.

Two redundant traffic mechanisms were tried. One was the 3 + 1(XOR) FEC scheme and the
other was a simple packet duplication. For a random packet loss probability of �, both mechanisms
have a probability of O(�2) to lose a packet sequence. The fractions of the redundancy traffic are
25% and 50% for 3 + 1(XOR) FEC and duplication, respectively.

Bandwidth, time spent for the packet repairs and timing jitter of the packet receipts were

measured under various conditions. The target values are 10Mbps for the bandwidth and less
than 1ms of time for packet repairs and reception jitter. The packet length should be small enough
compared with the Front-End buffer depth of 1000 events. Zero packet loss, 1�10�3 and 1�10�6

packet loss rates for 500 RU nodes were emulated. The CRC was not implemented at this time.
In general, the results of the tests performed using this simple hardware/software configu-

ration already satisfied the requirements for the RCN. There was, however, a problem in the very
long tail of the packet reception jitter. Detailed results were presented in the talk. Effects of packet
redundancy and rate regulation by ACK packets were also manifested.

4 Summary and future

The implementation of the protocol is still preliminary. There are several problems to be solved,
in particular the long tail of the packet reception jitter. The bandwidth is enough for the L1 trigger
distribution, but may be too narrow when we include trigger throttling information from the RUs
to the EVM, which in turn informs the L1 trigger. In any case the generally positive benchmark
results encourage further development of this reliable broadcast protocol.

Possible future options for improvements will be an implementation on a real-time OS
like RT-Linux or VxWorks, a lower-overhead base protocol for Ethernet (VIA, or custom) and
variations on the FEC scheme. For the hardware we have already started studies of an IEEE1394
(Firewire) network. This may give us significantly lower latency and enough room for extra traffic.

Acknowledgements

We would like to thank Mark Bowden for suggestions on the broadcast protocol, Don Holmgren
and Ron Rechenmacher for their Linux kernel level message logging system, TRACE, used in the
benchmark tests.

References

1 The Compact Muon Solenoid, Computing Technical Proposal, CERN/LHCC 96-45, 1996
2 E. Barsotti, M. Bowden, R. Kwarciany, M. Litmaath, V. O’Dell, Preliminary Specifications

for the CMS Event Manager, CMS internal note, draft
3 K. Obraczka, Multicast Transport Mechanism: A Survey and Taxonomy, IEEE Communi-

cations Magazine, 1998
4 M. Handley, B. Whetten, TR. Kermode, S. Floyd, L. Vicisano, The Reliable Multicast De-

sign Space for Bulk Data Transfer, IETF internet draft, 1999

