
7KH�3HUIRUPDQFH�DQG�6FDODELOLW\�RI�WKH�EDFN�HQG�'$4�VXE�V\VWHP

,� $OH[DQGURY���9� $PRUDO���$� $PRULP���(� %DGHVFX���'� %XUFNKDUW���0� &DSULQL�����/� &RKHQ���
3�<� 'XYDO���5� +DUW���5� -RQHV���$� .D]DURY���6� .RORV������9� .RWRY���'� /DXJLHU���/� 0DSHOOL������
/� 0RQHWD���=� 4LDQ���&� 5LEHLUR���9� 5RXPLDQWVHY���<� 5\DERY���'� 6FKZHLJHU���,� 6RORYLHY����

1 Joint Institute for Nuclear Research, Dubna, Russia
2 Lisbon Institute of Physics, Lisbon, Portugal
3 Institute of Atomic Physics, Bucharest, Romania
4 CERN, Geneva, Switzerland
5 Centre de Physique des Particules de Marseille, IN2P3, France
6 NIKHEF, Amsterdam, Netherlands
7 Petersburg Nuclear Physics Institute (PNPI), Gatchina, St. Petersburg, Russia
8 Section de Physique, Universite de Geneve, Geneva, Switzerland
9 On leave from 3.
10 On leave from 8.
11 Spokeperson for DAQ-1 project

$EVWUDFW

The DAQ group of the future ATLAS experiment has developed a prototype system based
on the Trigger/DAQ architecture described in the ATLAS Technical Proposal [1] to support
studies of the full system functionality, architecture as well as available hardware and
software technologies. One it’s sub-systems is the back-end [2] which encompasses the
software needed to configure, control and monitor the DAQ, but excludes the processing and
transportation of physics data.

This paper gives an overview of the back-end software, it’s performance and scalability
tests, their current status and future developments.

Keywords: DAQ, back-end, performance, scalability

� ,QWURGXFWLRQ

The goal of the ATLAS data acquisition (DAQ) and Event Filter (EF) prototype “-1” project is to
produce a prototype system representing a “full slice” of a DAQ suitable for evaluating candidate
technologies and architectures for the final ATLAS DAQ system on the LHC accelerator at CERN.
Within the prototype project, the back-end sub-system encompasses the software needed to
configure, control and monitor the DAQ, but excludes the processing and transportation of physics
data. The back-end software is essentially the “glue” that holds the sub-systems together. It does
not contain any elements that are detector specific as it will be used by all possible configurations
of the DAQ and detector instrumentation. The DAQ system includes interfaces required by the
triggers, processor farm, accelerator, event builder, data-flow and detector control system (DCS).

� %DFN�HQG�DUFKLWHFWXUH

In this section there is description of the back-end components, their design principles and
back-end operational environment.

��� %DFN�HQG�FRPSRQHQWV

The user requirements gathered for the back-end sub-system have been divided into groups related
to activities providing similar functionality. The groups have been further developed into

components of the back-end with well defined purposes and boundaries. The components have
interfaces with other components and external systems, specific functionality and their own
architecture. The components have been grouped into two sets: core components and trigger/DAQ
and detector integration components.

2.1.1 Core components

The core components of the back-end sub-system constitute it’s essential functionality and they
had priority in terms of time-scale for development in order to have a baseline sub-system that can
be used for integration with the data-flow sub-system and event filter. The following components
are considered to be the core of the back-end sub-system:
� &RQILJXUDWLRQ�GDWDEDVHV are used to describe a large number of parameters of the DAQ

system architecture, hardware and software components, running modes and status. One of
the major design issues of Atlas DAQ is to be as flexible as possible, parameterized by the
contents of the configuration databases.

� 0HVVDJH� UHSRUWLQJ� V\VWHP (MRS) provides a facility which allows all software
components to report messages to other components in the distributed environment. The
MRS performs transport, filtering and routing of messages.

� ,QIRUPDWLRQ� VHUYLFH (IS) provides an information exchange facility for software
components. Information (defined by supplier) from many sources can be categorized and
made available to requesting applications asynchronously or on demand.

� 3URFHVV�PDQDJHU (PMG) performs basic job control of software components. It is capable
of starting, stopping and monitoring the status (e.g. running, exited) of components
independent of the underlying operating system.

� 5XQ�FRQWURO (RC) is used to control the data taking activities by coordinating the operations
of the DAQ sub-systems, back-end software and external systems. It has a user interface for
the shift operators to control and supervise the data taking sessions. It has software interfaces
with other DAQ sub-systems and back-end components to exchange commands, status and
control information.

2.1.2 Trigger/DAQ and detector integration components

The following components are required to integrate the back-end with other online sub-systems
and detectors:
� 5HVRXUFH�PDQDJHU (RM) allocates resources (hardware and software resources which can’t

be freely shared) and allows several groups to work in parallel without interference.
� 3DUWLWLRQ�PDQDJHU extends RM to allow simultaneous work of several partitions.
� 7HVW�PDQDJHU (TM) organizes individual tests for hardware and software components (the

individual tests themselves are not the responsibility of the TM which simply assures their
execution and verifies their return status).

� 'LDJQRVWLFV�SDFNDJH (DS) uses tests held in the test manager to diagnose problems and
verify functioning status of separate components or the entire system (DS verification
component) and to control the system, diagnose and recover problems during different
phases of system functionality in automatic or operator assistance modes (DS supervision
component).

� ,QWHJUDWHG�JUDSKLFDO�XVHU�LQWHUIDFH (IGUI) allows the operator to control and monitor the
status of the current data taking run in terms of it’s main parameters, detector configuration,
trigger rate, buffer occupancy and state of the sub-systems.

� 2QOLQH�ERRNNHHSHU archives information about the data recorded to permanent storage by
the DAQ system. It records information on a per-run basis and provides a number of
interfaces for retrieving and updating the information.

� (YHQW�GXPS samples events from the data-flow to present them to the user in order to verify
event integrity and structure.

��� 2SHUDWLRQDO�HQYLURQPHQW

It is expected that this environment will be a heterogeneous collection of UNIX workstations, PC
running Linux or Windows NT and embedded systems running various flavours of UNIX
operating systems with real-time features (e.g. Lynx OS) connected via a local area network.

The back-end software has been developed in C++ and ported to several compilers on the
Solaris, Linux, HP-UX, Windows NT and Lynx operating systems.

��� &RPSRQHQWV�GHVLJQ

The various components describing above all require a mixture of facilities for data storage,
inter-process communication, graphical user interface, complex logic-handling and general
operating system services. Candidate freeware and commercial software packages were evaluated
to find the most suitable products for each technology. C++ with a general purpose library, called
Tools.h++, is the primary programming language. The Objectivity/DB object-oriented database
and custom-made in-memory persistent object manager (OKS) are used for data persistence1.
CORBA (ILU) and a custom-made package on top of it (IPC) are used for communication. Finite
state machines are used for implementing object behaviour (CHSM). The CLIPS expert system
tool is used as a basis for diagnostic system. Motif and Java are used to implement graphical user
interfaces.

� 7HVW�5HVXOWV

Performance and scalability tests have been made for individual components (including
configurations comparable to those required for the final ATLAS system), and, more recently, for
the complete back-end sub-system integrated with some components of the data-flow sub-system.

��� &RPSRQHQWV�WHVW�UHVXOWV

A brief overview of individual component test results are presented below (see [3] for more
information).

3.1.1 Configuration databases

The configuration databases are used by many components during initialization and their
performance is very important for the system start-up time. The performance benchmark [4] has
been made for several OKS configurations including a single read-out crate, a typical prototype -1
configuration (10 crates) and the expected final ATLAS configuration (200 crates). By the
benchmark’s results, the average workstation requires less than one second to initialize the
prototype -1 DAQ configuration and about half of one second to perform complete traverse and
shutdown. The average single board VME based front-end computer is about three times slower.

3.1.2 Information service and message reporting system

The performance and scalability of information systems are important during all phases of system
operation. Both MRS and IS are scalable since they allow multiple servers to split the work with
different clients or information domains across them. The benchmark results [5], [6] made with
single servers show that on average workstations the response time to report a single message or
update a piece of information is a few milliseconds depending on it’s size and the number of
senders and receivers.

1 The back-end DAQ can run without Objectivity/DB by relying solely on OKS

3.1.3 Process manager

The performance of PMG is important during system initialization and shutdown. The results [7]
show that the time to start new processes slowly increases with the number of managed processes
and is about a few hundred milliseconds on an average workstation. The time to kill a process is
constant at less than 100 ms.

3.1.4 Run control

The performance of RC is important when the system needs to change it’s state. The RC is scalable
by changing the structure of the control tree hierarchy (a controller may control any number of
nodes). The results [8] obtained on average workstations show that the time to change a system’s
state with several tens of nodes varies from several hundreds of milliseconds up to a few seconds
depending on the state of the system. The overhead of starting/stopping a succession of runs is less
than one second.

��� %DFN�HQG�VXE�V\VWHP�WHVW�UHVXOWV

The back-end sub-system integration tests [9] bring together all the core components and several
trigger/DAQ/detector integration components to simulate the control and configuration of data
taking sessions. The tests have been made using a shell script that goes through different phases as
shown on Figure 1:
� start the back-end server processes to initialize communication services and PMG
� launch configuration specific processes via DAQ supervisor as described in the database
� marshal the hierarchy of RC controllers through different states (initialized -> loaded ->

configured -> running -> configured -> running -> configured -> loaded -> initialized)
� stop configuration specific processes via the DAQ supervisor
� stop the back-end server processes

)LJXUH������Activity diagram showing the actions performed by the benchmark script

For all these tests the back-end communication server processes, DAQ supervisor and RC
root controller were always started on the same workstation (i.e. the host on which the benchmark
script was launched). The others processes (PMG agent, local DAQ emulator and corresponding
RC controller) were started on separate PCs running linux, or VME based PowerPC CPU boards
running Lynx OS. The computers were not dedicated to the benchmark and they were used by
other developers at the same time.

The tests were performed several times for each configuration and the average values for
each test were calculated. The standard deviation of the tests strongly depends on loading of the
computers and may reach a few tens of percents for lengthy operations (e.g. setup and stop).

The PMG agents are started during the setup stage via a remote shell that requires long
delays (20 seconds) for synchronization purposes. In test-beam and production use the agents will
be started during the boot of the machines.

B II

LL

CC C

RR

B

VHWXS Z
DU
P
�V
WR
S

VKXWGRZQFROG�VWDUW FROG�VWRSZ
DU
P
�V
WD
UW

/HJHQG�

B

I

L

C

R

initialized
booted

configured
loaded

running

The results of such tests are presented below for different configurations and types of
operations2:

)LJXUH������Tests results for start-up and warm stop/start operations

)LJXUH������Tests results for start-up and close operations

From the results the following insights can be obtained:
� The time to start/stop processes is dependent on the operating system, computer architecture

and configuration.
� Once all the processes have been started, the time taken to change system state remains

constant which indicates good scalability of the distributed control provided by the RC.
� The use of IS, MRS and configuration databases has a negligible effect on the performance.
� The test results show that even for the largest configurations the benchmark execution time

is in an acceptable range (maximum one minute to start-up a linux based system).

� 6XPPDU\�DQG�IXWXUH

The individual performance and scalability unit tests have been made for all back-end core
components and show that they are in accordance with the DAQ/EF prototype requirements. The
work will continue to perform similar tests for the back-end integration components.

Following individual component unit tests, integrated tests have been performed employing
the majority of the components. The goal of such tests is to verify the correct inter-operation of the
components, the ability to operate in a distributed, heterogeneous multi-platform environment and
gather performance measurements relevant to the operation of the DAQ in a production
environment.

2 6WDUW�XS operation means “setup” and “cold start”. &ORVH operation means “cold stop” and “shutdown”.

/LQX[�3&V

�

��

��

��

� � � � � � � �

QXPEHU�RI�SURFHVVRUV
3HQWLXP�,,,�����0+]�����0%

WL
P
H
��
V
H
F
R
Q
G
V
�

Warm Start

Warm Stop

Cold Start

Setup

/\Q[�26�90(�3URFHVVRUV

�

��

��

��

���

���

���

���

� � �� ��

QXPEHU�RI�SURFHVVRUV�FUDWHV
3RZHU3&���������0+]�������0%

WL
P
H
��
V
H
F
R
Q
G
V
�

/LQX[�3&V

�

��

��

��

��

� � � � � � � �

QXPEHU�RI�SURFHVVRUV
3HQWLXP�,,,�����0+]�����0%

WL
P
H
��
V
H
F
R
Q
G
V
�

Shutdow n

Cold Stop

Cold Start

Setup

/\Q[�26�90(�3URFHVVRUV

�

��

���

���

���

���

� � �� ��

QXPEHU�RI�SURFHVVRUV�FUDWHV
3RZHU3&���������0+]�������0%

WL
P
H
��
V
H
F
R
Q
G
V
�

Future testing is required to gather more statistics for various configurations (especially on
larger configurations if access to suitable hardware is possible). It will be necessary to detect more
precisely the reasons for the inferior performance of Lynx OS compared to Linux. Future work to
further improve the performance of the back-end will concentrate around the scripts running the
DAQ system, DAQ supervisor and start-up of PMG agents to make more use of available
synchronization techniques and not rely on delay timeouts.

In the future we will replace the commercial Tools.h++ general purpose C++ library with
STL. We will also investigate alternative CORBA implementations that provide a better support
for the latest version of the standard and more layered services. We are currently investigating
using XML as a replacement storage technique inside the OKS in-memory database package.

� $FNQRZOHGJPHQWV

The authors would like to thank all of their colleagues in the ATLAS prototype DAQ project for
providing valuable input during the development of the back-end components. We are indebted to
our initial external users, namely Murrough Landon et al., for their valuable feedback on this
software and the associated documentation. We also would like to thank our system managers,
Corine Costaz and Tony Wildish, for keeping the computers humming.

� 5HIHUHQFHV

1 ATLAS Technical Proposal, CERN/LHCC/94-43 (ISBN 92-9083-067-0)
2 I.Alexandrov et al., “Back-end sub-system of the ATLAS DAQ prototype”, CHEP-98, Chicago
3 I.Alexandrov et al., “Performance and Scalability of the Back-end sub-system in the ATLAS DAQ/

EF Prototype”, RT-99, Santa Fe, 1999
4 I.Soloviev, “Test Report of the Configuration Databases for the Atlas DAQ Prototype-1”, ATD TN

#114, 1999, (see http://atddoc.cern.ch/Atlas/Notes)
5 E. Badescu, M. Caprini, S. Kolos, “Test Report of the Information Service for the Atlas DAQ

Prototype -1”, ATD TN #118, 1999, (see http://atddoc.cern.ch/Atlas/Notes)
6 D.Burckhart, M.Caprini, A.Radu, “Unit Test Report of the Message Reporting System for the Atlas

DAQ Prototype-1”, ATD TN #121, 1999, (see http://atddoc.cern.ch/Atlas/Notes)
7 J-H. Jureit, P-Y Duval, “Unit Test Report of the Process Manager for the Atlas DAQ Prototype-1”,

ATD TN #137, 1999, (see http://atddoc.cern.ch/Atlas/Notes)
8 P-Y. Duval, R. Jones, D. Schweiger, S. Wheeler, “Test Report of the Run Control for the Atlas DAQ

Prototype-1”, ATD TN #113, 1999, (see http://atddoc.cern.ch/Atlas/Notes)
9 D. Burckhart et al., “Back-end Summary Document”, ATLAS internal note ATL-DAQ-2000-001

	The Performance and Scalability of the back-end DAQ sub-system
	Abstract
	1 Introduction
	2 Back-end architecture
	2.1 Back-end components
	2.1.1 Core components
	2.1.2 Trigger/DAQ and detector integration components

	2.2 Operational environment
	2.3 Components design

	3 Test Results
	3.1 Components test results
	3.1.1 Configuration databases
	3.1.2 Information service and message reporting system
	3.1.3 Process manager
	3.1.4 Run control

	3.2 Back-end sub-system test results

	4 Summary and future
	5 Acknowledgments
	6 References

