
Data Handling and Filter Frameworks for the D0 L3 Trigger System

A. Boehnlein1, G. Briskin2, G. Brooijmans1, D. Claes3, D. Cutts2, S. Mattingly2, M. Souza4, G. Watts5.

1 Fermilab
2 Brown University
3 University of Nebraska
4 LAFEX/CBPF - Rio de Janeiro
5 University of Washington

Abstract

The D0 Collaboration at the Fermilab Tevatron will use a farm of commodity PCs running the
Windows NT OS as the third level trigger system. Data blocks from front-end crates will move
independently in a data driven mode to individual nodes of the L3 farm. The input rate into the L3
farm is planned to start at over 1 KHz.

The data-handling framework located in every L3 farm node is built from separate components
that will load and lock events into physical memory, examine event integrity and facilitate in the
physics filter operation. Multiple events will be staged in memory, and each node will use SMP
architecture to allow for multiple filter processes.

The L3 filter is software-based and will use all available information from the D0 detector. The
trigger decision will be based on partial event reconstruction, where the target rejection for this
trigger level is a factor of 20 with an average decision time of 50 milliseconds. The steering code
for this partial reconstruction is written in C++ and uses object oriented design techniques and
patterns.  It includes flexible on-demand dynamic loading of the reconstruction components based
on the trigger menu, as well as centralized statistics and error management systems.

In this paper we report on the design, implementation and status of the data-handling and filter
frameworks.

Keywords Trigger System, Filtering, Level 3

1. Introduction

A Level 3 farm node is a combination of two separate hardware components, a multi-processor
machine with a Network Interface and a VME crate with MultiPort Memory (MPM) boards. The
event fragments from Front End Crates (FECs) arrive into the MPM boards located in the VME
crate. This is the first time in the DAQ system that all the data for a single event comes together.
The assembled event data is then loaded into the analysis node memory. A L3 farm node will be
a high-end SMP machine. The exact configuration will be determined as close to the beginning
of the Run 2 as possible in order to take full advantage of the continual hardware improvements
and price drops in the commodity market.

The L3 Node Framework software has been designed to manage the data flow in and
through the L3 Farm Node. The framework is responsible for configuring the MPMs for the
arrival of a new event, loading event data into processor memory, and checking event-data
integrity. The event data is then distributed to one of several L3 Filter processes for physics
analysis. If the filter process accepts the event, it will be sent to the online system for recording
and distribution; otherwise the event data will be discarded.



The L3 Node Framework is designed to run on the Windows NT operating system (OS).
Windows NT has been designed from the ground up to be a highly responsive, general-purpose
OS.

In the following we will discuss the different components of the L3 Node Framework and
L3 Filter Process.

2. Data Handling Framework Software

Figure 1 shows the internal framework structure. The lines represent the logical data flow
through the framework software components. Every component is a separate thread of
execution. The ladder boxes in the data flow path represent queues that hold pointers to the
events in shared memory. The use of event pointers is dictated by the requirement that no
copying of event data should take place after it is loaded into the memory of a farm node. The
queues make communication and synchronization between framework components simple and
straightforward. With this approach software design is natural and modular: it is easy to plug in a
new component without modification to the framework.  For the most part, all components are
represented by threads and exist inside a single Windows NT process. The exception is the L3
Filter; it runs as a separate process in its own address space. By isolating the DAQ code from the
physics filter code we can build and release the two modules independently of each other.
Furthermore, by isolating the filter process we prevent crashes in the filter code from bringing
down the whole farm node. This is especially important, as there may be more than one L3 filter
process running on a single farm node. The event data the filter process was working on when it
crashed will be flagged and then passed on to the host system.

Figure 1. L3 Node Framework Software.

• MPM Reader Active Object: The MPM Reader Active Object controls and uploads data
from the MPM boards located in the attached VME crate. The upload of event data into



analysis node memory is done via the bridge DMA engine. While DMA is in progress (i.e.
copying of event data from MPM buffers into node memory) the analysis node processor(s)
are free to perform other L3 framework tasks.

• Validation Active Object: The Validation Active Object examines raw event data for any
errors. It insures that all the Front End Crates (FECs) that were supposed to send their data
for this event class are present in the raw event. If raw event data is corrupted in any way it
will be dumped or copied and sent to a designated node for debugging purposes. After
appropriate action, in case of validation failure, the event pointer is returned to Pool Queue.
Otherwise, the event pointer is added to the filter queue.

• L3 Filter Input Interface Active Object: The L3 Filter Input Interface Active Object
communicates with the L3 Filter Process. The inter-process communication (IPC)
mechanism between the node data-handling process and the L3 Filter process uses shared
memory and an Event Synchronization Object. The number of L3 Filter Input Interface
Objects is equal to number of L3 Filter processes. If the L3 Filter process crashes for any
reason, the raw event data will be dumped or copied and sent to a designated node for
debugging purposes. The pointer to an event buffer will then be returned to the Pool Queue
and the crash reported. The L3 Filter Input Interface Object then restarts the L3 Filter
Process.

• L3 Filter Output Interface Active Object:  The L3 Filter Output Interface Object is
notified by L3 Filter process that an accepted event is available for transfer to the online
system for storage and distribution. The number of L3 Filter Output Interface Objects is
equal to the number of L3 Filter processes. If L3 Filter process crashes for any reason the
pointer to the output event buffer will be returned to the Output Pool Queue.

• Collector/Router Interface Active Object: The Collector/Router Interface Active Object
sends filter-accepted events to the online Collector/Router for distribution to other online
system components. The wrapper inserts required information into the header prior to
sending the event. In the case of network failure the Collector/Router Interface Object will
try to reconnect and send the event for a specified number of tries. If the object fails to
reconnect and send successfully, the output data will be stored on the local disk and network
error condition will be reported. When the network connection is reestablished the locally
stored events will be sent to the online system.

• L3 Filter Process: The L3 Filter process provides a main entry point into the physics filter
analysis program and is described in greater details in the next section.

3. L3 Filter Framework Software

L3 Filter is a separate process and runs in its own address space. From the Run 1 experience it
was learned that the physics filter code changes more often than other parts of the framework.
Isolating the filter process to its own address space prevents memory corruption in the data-
handling process and/or crashes in the filter code, from bringing down the L3 Farm Node. In
addition it makes integration of new releases of the filter code into the L3 Node Framework easy
and straightforward.

The L3 process framework is responsible for inter-process communication with the data-
handling process and in providing a correct calling sequence to the filter framework public



interfaces. It is also responsible for keeping track of all messages that need to be passed to the
filter framework for correct operation. The L3 filter process’ access to raw event data will be
through a read only memory. In the following we describe in greater detail D0 filter framework
infrastructure.

3.1. ScriptRunner

ScriptRunner[1] is the set of classes that handles the general Level 3 infrastructure. One function
is to supply the “hooks” into the Level 3 Framework (described above). This allows for the
control of the filtering process, from initialization of run conditions, start of run, through end of
run and the accumulation of monitoring and error messages. Under proper hooks, ScriptRunner
reads in the trigger list and based on that trigger list creates a map of the available tools and
filters and then an execution tree. ScriptRunner is then responsible for steering the event by
event processing, and for returning the trigger decision to the framework. ScriptRunner will
check all events received for the passed Level 2 bits and/or marked as unbiased. Based on the
fired trigger bits, ScriptRunner will traverse the corresponding execution tree branch, execute the
appropriate filter scripts, which execute Level 3 filters, which in turn execute the needed tools.
Tools and filters must keep track of their results, in case they are called more than once per
event. All filter scripts of all fired L2 bits must be run to come to a decision. At the end, the
event is either passed, failed, unbiased or in error.

For passed and unbiased events, ScriptRunner requests a copy of the relevant tool and
filter information to put into the L3 output chunk which is added to the event data. Then
ScriptRunner notifies the tools and filters to reset, and returns the decision to the framework,
which then takes appropriate action based on the decision.

3.2. Tool and Filters

The functionality of providing a list of candidate physics objects is separated from the actual
trigger selection. Tools are classes that implement the algorithms for identifying candidates,
while filters check whether any of the candidates satisfy the trigger conditions.

3.3. Tools and Filter Registration

Tools register their address with ScriptRunner, using a Factory pattern (ToolFactory), through an
appropriate C pre-processor (Cpp) macro in a similar manner as the D0 offline batch framework
registration scheme[2]. This procedure isolates the Tool developers from the bookkeeping, while
allowing a straightforward implementation of Tools as dynamic linked objects. This Cpp macro
takes the Tool type as parameter and creates pointers to prototype tool objects, from which
copies, keyed by their names, will be made upon request. For instance, ele_loose, ele_tight,
ele_escape, are different instances of the Electron Tool type. Through its Macro, the first Tool of
type Electron that is instantiated calls the prototype maker and makes an instance of it. All others
make copies (clones) of this Tool type, with different names. They are unique as their (pseudo)
constructors reads distinct parameter sets.

Every time a Tool instance is made, the ToolFactory performs several functions:
• A new entry to this Tool type is added to the pointer map for the first registration of a given

Tool type.
• For each Tool instance, if the first time

− a new entry in the Tool instance map is made -
− and a new entry to the reference count map for this Tool name is made.



• Otherwise,
− The reference count is incremented for this instance.
− This Tool instance address is returned from the instance map.

• DLL information for this Tool instance is registered - see below

Currently, Filter registration is hard-coded into the filter map, but a flexible registration
scheme will be implemented in the future.

3.4. Dynamic Linked (DLL) Tools

In principle, the Tools should only be loaded when needed by the current trigger programming.
Conversely, Tools should be freed when they are not needed anymore. But that could cause a
bookkeeping overhead for the L3 framework, if each Tool has a separate own DLL. The current
implementation allows this strong DLL choice as well as an intermediary situation, grouping
Tools in a few DLLs by functionality or just have one DLL for normal data collection and
others for test purposes and so one. The method chosen was that the Framework will pass
ScriptRunner the DLL file name where a given Tool sits, when such Tool is requested (dynamic
linked). In this way, one can make any grouping choice and even modify it. The fact that Tools
can call others Tools is transparent.

The main ingredients are:
• All Tools belong to an abstract base class to which an exported symbol is created. In this

way, all individual Tools are searched by the C++ compiler/linker itself through its virtual
tables, instead of the usual (cumbersome) DLL link tables. The Tool registration method
described above implements this scheme. From the NT DLL machinery, only two functions
are needed:
− handle = LoadLibrary( dllfilename);
− FreeLibrary( handle );

• A welcome consequence is the use of the Unix's calls counterpart dlopen(dllfilename) and
dlclose(handle), making the NT -  Unix switch very straightforward.

• We use our own reference counting for each DLL that is downloaded, instead of the
automatic system wide one. That is, we ``LoadLibrary'' and ``FreeLibrary'' only once, the
other calls are ``reference counted''. This allows the possibility to have several ScriptRunner
executables running in parallel in EACH node. The system wide DLL automatic reference
counting will deal only with references to a same DLL in more then one ScriptRunner copy.
This insures, as usual, that only one copy of a given DLL will be loaded in each node.

References:

[1] “The D0 Level 3 Software Trigger”, Amber Boehnlein, Dan Claes, Moacyr Souza,
Gordon Watts, CHEP ’98: Proceedings of the Conference on Computing in High Energy
Physics, Chicago, (1998)

[2] Jim Kowalkowski, ``D0 Framework,'', http://home.fnal.gov/~jbk/docs/index.html},
1998.


