Practical Security in Large Scale Object Oriented Databases

Andrew Hanushevsky™

! Stanford Linear Accelerator Center, USA

Abstract

The BaBar experiment at the Stanford Linear Accelerator Center is designed to perform
a high precision investigation of the decays of the B-meson produced from electron-positron
interactions. The experiment, started in April 1999, will generate approximately 200TB/year
of data for 10 years. All of the data will reside in Objectivity databases accessible via the
Advanced Mult-threaded Server (AMS). While most of the data is accessed via on-site
computers, some is remotely available to scientists at other installations. In either case, al of
the data must be protected from unauthorized modification. The sheer quantity of data
together with distributed data access requirements necessitates an extended security
infrastructure not commonly found in object oriented databases. The SLAC-designed
Generic Authentication Protocol (GAP) provides this infrastructure and has been
incorporated by Objectivity into their database product. This paper describes the design of
the security protocol used in Objectivity/DB to authenticate users, the mechanism used to
actually provide for proper authorization, and how the protocol can handle various
authentication models such as Kerberos and PGP

keywords access control, authentication, authorization,
capabilities, Objectivity/DB, security

1. Introduction

Few people would deny the necessity for security in most database systems. By security, we
mean the combination of authentication (i.e., who are you), authorization (i.e., what can you do),
and enforcement (i.e., appropriately limiting your actions). Close inspection of most database
systems, even when one ignores non-commercial ones, reveals very few ruggedly secure
systems, and fewer ill that seamlesdy integrate into existing security infrastructures. The
reasons are historical, technical, and ultimately economic. Many database systems were
developed at a time when security was synonymous with system login. The system provided
access control to some critical resource (e.g., file access) based on the user’s system supplied
login credentials. That upbringing shows in current database offerings. So, as security models
matured and became network-based, the number of variations multiplied. Incorporating a wide
range of security models for architectures developed at a smpler time just became too costly.
Hence, today’ s serious lack of rugged manageable security in most database systems.

2. Security in Objectivity/DB

Objectivity/DB had a similar upbringing; not only did the database system have little security,
but aso putting in security without disrupting a large installed user-base was daunting. We set
ourselves four goals:

e Thesystem should handle at least private and public key authentication models,

e It should integrate with any installed security infrastructure,

e authorization should be independent of authentication, and

Produced under contract DE-ACO03-76SF00515 between Stanford University and the Department of Energy

e The model should be extensible (i.e., new security protocols could be incorporated without
changing the database server protocol).

In order to appreciate the complexity of the task; consider the differences between
Kerberos (figure 1), a private key authentication system and DASS (figure 2), a typical public
key authentication system.

11 Gret tos ticket { i
. 125 (g - K erberos Authenticate
i Luthenticati
1 Lot -:-:tgs,u:,IPu:,t,lj{sﬁkfﬁtgsﬂslec 2 ¥ Se;_vﬁ o *cha]le:nge,‘:m:lﬁ{chaﬂmge):vl'{x—m 2 Tervice
x
i3 Getticket for service - Ticket 5 Perfomm action y
1
& -::tgs,c,élﬁ%%s bmg-éfz&dﬁff%ﬂ%osrl:- 4 Granting 3 cec,IP et challeng e o—prv
et G AN A A AT A Servies Get puhlic k Get public k
n G C’-ﬁrﬁ; hashs forpsuer\-'iceg}r forpghmt cey
<G LS TGN) ;
L ’ El{"%i:et:- <Adhenfcator = Fow—puib R ot
Figure 1. Private KeyAuthentication Figure 2: Public Key Authentication

In Kerberos, a client authenticates with a specialized authentication server, KAS, by
asking the KAS for a “ticket” to use the ticket granting service, TGS. The KAS responds with a
packet containing the TGS name, client’s name, current time, ticket lifetime, and a random
session key, Ksl, al encrypted with a key only known by the KAS and TGS. The same session
key, Ksl, is appended and the whole data stream is encrypted with a key, Kc, known only by the
client and the KAS. Therefore, by decrypting the ticket, the client proves its authenticity. The
client can then construct an authenticator containing the client’s name, IP address, and current
time all encrypted with Ksl. To authenticate to an arbitrary service, the client asks the TGS for a
ticket to the service and sends the ticket obtained from the KAS and the authenticator. The TGS
can prove the client’s authenticity because it can decrypt the ticket, extract out the session key,
Ksl; and use it to decrypt the authenticator. The client is authentic if the information in the
authenticator matches the same information in the ticket, proving that the client knew the
origina private key, Kc. If the client passes this test, the TGS issues a service ticket which
functions identically as the TGS ticket but only for the requested service. Thus, whenever the
client requests service from a server, the client sends the server's ticket along with an
authenticator to prove the client’ s authenticity.

In a public key system, the client first contacts the required service and asks for
authentication information. The service responds by issuing a challenge to the client. The
challenge is typically signed with the service's private key, Kx-prv, so that the client may verify
the authenticity of the service. Once the client receives the challenge, it obtains the service's
public key from a trusted Certificate Authority, CA, and authenticates the service. It then
modifies the challenge in some appropriate way (i.e., typicaly the adding one to its numeric
value) and signs or encrypts it with its private key, Kc-prv. On the subsequent request, the client
also sends the modified chalenge. The server authenticates the client by obtaining the client’s
public key from a trusted CA, decrypts the challenge, and checks if it has been correctly
modified. This protocol is followed for each server request.

Multiple variations exist of these two different protocols. In the private key arena
Kerberos V4, AFS Kerberos (a version 4 variant), Kerberos V5, DCE Kerberos (a version 5
variant), and Microsoft Kerberos (a DCE variant) are popular. In the public key arena DASS,
PGP, RSA, SSL, and TSL are used.

It was clear to use that accommodating such a wide array of protocols would require a
radically different approach. We decided to use a tunneling single challenge protocol with
optional arbitration. Such a protocol can handle virtualy all private and public key
authentication variants in existence today. The tunneling aspect of the protocol means that the
authentication protocol is transparently carried across the database protocol. This makes the
security protocol independent of the database protocol, and prevents changes in either one from
impacting the other. Externa shared libraries using a well-defined object-oriented interface
handle the actua implementation of the protocol. While the native authentication
implementation supports Kerberos, any other protocol can be implemented by merely replacing
the security library. Furthermore, the scheme allows for support of multiple protocols — a boon
for heterogeneous environments. A typical client server interaction is shown in figure 3.

! : Clisnt
| & pplication !
! ___ 2 | Security |1
! Objectivity E emel - Library ||
: Protocol Layer ‘ :
: : !
| ams Protocol Layer 3 ' :
! : Leerical File System ™ Secusity :
 oofs Laver Libary |1
: . - :
' OOSS| Fhysical File System Layer | | :
! Server |

Figure 3: Objectivity Generic Authentication Protocol

In Objectivity/DB Version 5.2, the client-side kernel has been re-engineered to
automatically call appropriate security functions during communications with the AMS in order
to implement the Generic Authentication Protocol. On initial contact with an AMS, the client’s
Objectivity Kernel asks the AMS for a security token (i.e., one-time challenge). The server may
respond with something like:

& P=K RB4,amsser v@d ac.stanfor d.edu,0f00& P=PK P3,ams01: 3333,0f00,0fce1100

The AMS is willing to use one of two protocols. Kerberos Version 4 and PKP Version 3. For
Kerberos, the client must get a ticket for the service associated with amsserv in the
dlac.stanford.edu realm. When generating credentials, a request mask of 0f00 should be used.
For PKP, protocol arbitration should be done by connecting to host ams01 at port 3333 in the
same domain and using token O0fcel100 to start the negotiation phase. The credentials request
mask is Of00.

The token is passed to a method in the security library that creates a security object. That
object is used to obtain future credentials. Whenever the Objectivity kernel makes a request to
the AMS, it first obtains authentication credentials. The credentials, regardless of the method
used, are wrapped in a self-describing envelope and tunneled through the database request
stream. On the AM S side, the credentials are unwrapped and passed to the oofs layer along with
the particular request (e.g., open, read, write, etc.). The oofs layer uses complimentary security
routines to decode the credentials and establish the caller’s authenticity. The same layer aso
invokes user authorization and enforces any access limits.

Another replaceable object class in the security library handles the actual authorization
process. Consequently, any authorization model may be easily instantiated. However, for the
native implementation, we considered the difficulty of handling authorization for hundreds of
users relative to millions of databases. We chose a capability model. where each user is
associated with database permissions as opposed to an access control model where each database
carries with it alist of allowed users. In an environment where there are far fewer user objects
than database objects, a capability model is generally easier to maintain and manage. To further
ease administration, the implementation supports Unix groups, user groups, and capability
templates.

Figure 4 shows a simple capability entry. Here, user abh has read access to any databases
that starts on the path /objy/databases and read-write access to only databases on the path
/objy/databases/usr/abh. We chose a path-prefixing scheme because it is simple to understand
and effective in protecting large volumes of data. Also, more complicated schemes would
require that the AMS have undue knowledge of database internals.

. Authordzation Class
u abh rw jobjyilambasesfusrabh Authentication Class
Diata Storage Class
r jfobjyklainbases E erberos LOAP FILES
Figure 4: Sample Authorization Entry Figure5: Security Class Relationships

Finally, the authorization data must be stored in a permanent place. We decided to divorce
the data storage method from its processing. This allows for any number of storage methods to
be used by simply replacing the data storage class. The two supported methods allow for storage
in smple flat files or in an LDAP interfaced database. The former was chosen as the simplest
method for installations with very small numbers of users while the latter for installation wishing
to integrate existing user directory information. Figure 5 shows the relationship of the classes
used by the security library.

References

1 J G. Steiner, C Neuman, J. |. Schiller, “Kerberos: An Authentication Service for Open
Networks’, M.1.T. Project Athena, Cambridge, Massachusetts, March 30, 1988.

2. CKaufman, “Internet rfc1507”, September 1993.

3. A. Hanushevsky, “AMS Extensions Version 5.0", SLAC, October 26, 1999

