
Espresso – a Feasibility Study of a Scalable, Performant ODBMS

Dirk Düllmann

CERN, IT and RD45, Geneva, Switzerland

Abstract

At the request of the LHC Computing Board, the RD45 project has carried out an analy-
sis of the risks associated with the proposed strategy for providing object persistency for the
LHC experiments (namely an ODBMS such as Objectivity/DB and a MSS such as HPSS).
Although these systems are being successfully used by a number of experiments, including
BaBar at SLAC, one of the primary conclusions of the risk analysis is that the manpower re-
quired to develop a suitable system in-house should be estimated. This is due to the relatively
small size of the ODBMS market - estimated to be worth some $100M per year - and because
of a lack of a convincing commercial alternative to Objectivity/DB. We describe the goals and
non-goals of the feasibility study, the main architectural features, scalability and performance
characteristics and status of the prototype. We present an estimate of the manpower that would
be required to design and build a full-production system and compare this with alternatives.

Keywords: ODBMS, RD45, Persistency

1 Introduction

During the last 5 years of RD45 many experiments have started to use an Object Database Man-
agement System (ODBMS) in their production systems[1, 2, 3]. It has become clear that this
new technology is well matched to the specific requirements of HEP data management and offers
significant advantages over traditional systems like consistent data access and scaling up to the
petabyte region. The production experience gained by BaBar with Objectivity/DB have shown
that this new technology poses new challenges, e.g., for system administration and performance
optimisation but also that ODBMS systems can be efficiently deployed in large production sys-
tems. Even though Objectivity/DB as a commercial product is quite successful, the lack of an
convincing commercial alternative became a concern especially given the long lifetimes of LHC
experiments.

The Object Database market over the last years has not grown as fast as predicted even
a few years ago by many experts in the database field. Several ODBMS vendors have in the
meantime refocused their efforts on specific applications like management of web based docu-
mentation. Others provide their products now exclusively on the Windows platform. The number
of commercial ODBMS products in the high end market is therefore still limited and as of today
Objectivity/DB seems to be the only ODBMS product which has an architecture that provides the
scaling and performance required for HEP data stores.

On the technical side, the RD45 evaluations and also the production experience from BaBar
and CERES have pointed out several areas in which the current Objectivity/DB implementation is
still lacking support for HEP specific needs. In particular the support of data distribution, support
for private schema and data and the decoupling of tasks with different priority (e.g. DAQ and
Analysis) currently requires to use multiple federations in parallel. Maintaining the consistency

between these federations requires significant additional management effort on the application and
system management side.

2 The ESPRESSO ODBMS Prototype

The main goal of the ESPRESSO study is to evaluate the resources needed to design and implement
an alternative ODBMS as a collaborative development in the HEP (or more general physics) com-
munity. In particular we want to estimate the manpower requirements and available resources for
such a development on a time scale of LHC. In addition we evaluate several new solutions for HEP
specific problems, e.g. private schema or data, data replication in a WAN environment and provide
a testbed for central algorithms like cache lookup and replacement strategies, I/O optimisation for
wide area network and disk transfers.

It is an explicit non-goal of ESPRESSO to attempt at this stage a complete implementation of
an ODBMS product that would be usable in production as a replacement for Objectivity/DB. This
would require significantly more resources than are available in the RD45 context. ESPRESSO

should rather be seen as a feasibility study for a possible joint project involving resources from
many institutions in the HEP and the more general science community.

2.1 System Requirements

To guide the prototype design we have started from the preliminary requirements for a LHC data
store which have been produced in RD45. These requirements are summarised in the following:

� scalability in data volume and number of client connections
The architecture of the store should allow to consistently address stores at least up to the
100 PB region even under the constraint of file sizes of the order of 100GB.

� performance of navigational access
The typical data access in HEP applications is navigational. The store should allow for
direct lookup of any object in the store close to the I/O rate delivered by the underlying disk
hardware.

� transactional safety and crash recovery
The system should support concurrent read/write access of multiple client processes or
threads and should maintain data consistency across the whole store. After a possible hard-
ware or software failure it should be capable to recover to a consistent transactional state
without manual intervention.

� heterogenous access from multiple platforms and languages
The system should allow data access from different processor/compiler/operating system
platforms and multiple languages (initially at least C++ and Java).

Given the mainly positive experience with present ODBMS systems it seemed natural to
stay close to typical designs as documented in the computer science literature such as [7]. Only in
areas were HEP specific requirements have been seen we have tried to come up with alternative
solutions.

2.2 System Components

The prototype design has been broken down into a set of smaller component with well defined
responsibilities. The main focus has been to define the main component interfaces in order to
allow the replacement of a particular component implementation with a different one. For each
component we have tried to identified at least one possible implementation and prototype it in
C++.

The main components of the current prototype design are:
Storage Manager – This component maintains a transactional safe store for variable length

data objects. The actual I/O operation is delegated to a page server instance and is only attempted
if an appropriate lock can be acquired from the lock server. The storage manager maintains a client
side cache which holds data within (and if possible also across) transactions. Each data object is
uniquely identified by a 128 bit value (OID) which translates directly into a particular page and
file for fast navigational access. The size of ESPRESSO OIDs allows to address very large stores
even in the presence a limitation on maximum file size of the order of hundreds GB.

Schema Handler – The responsibility of the schema handler is to maintain a full description
of the data layout within a class or structure. It provides methods to determine the name, type,
position, size and data content of any object attribute and thereby allows to convert objects from
one platform representation into another.

Language Binding – The language binding is responsible for a tight integration between
one programming language and the data provided by the storage manager. It is responsible for
retrieving data on demand using the storage manager and converting this data to the format which
is expected by a particular processor/compiler combination. This conversion relies on the data
layout information provided by the schema manager and should preferably follow the ODMG
standard[6].

Data Server – The data server component is responsible for storing and retrieving one or
more data pages between disk and storage manager. For local I/O it directly calls the host operating
system I/O functions for the actual work. In case of remote access it communicates via a network
with a remote daemon process which provides access to remote disk storage.

Lock Server – The lock server maintains a central resource lock table which is used by all
storage manager instances to coordinate concurrent access to disk resident data.

2.3 Storage Hierarchy

An ESPRESSO store (or federation) is hierarchically structured into smaller storage units. The
new concept of a Domain introduces a notion for a set of tightly related files (files with many cross
file relationships). These domains relate closely to object model domains and allow to efficiently
move data between different federations for distribution and backup purposes. Since the catalogue
for different domains is maintained in different files, this design is expected to lead to better
concurrency behaviour than a single catalogue for the whole federation. Each Domain can contain
up to 64k Files each of them potentially on a different host. Each file may consist up to 2�10

9 Data
Pages. On each page up to 64k Object Slots may be addressed. This storage hierarchy is directly
reflected by the internal structure of Object Identifiers (OIDs) used by ESPRESSO to represent
references to persistent objects.

Domain No.
16 bits 32 bits 16 bits32 bits

Slot No.Page No.File No.

Figure 1: Espresso Object Identifier

In the catalogue we foresee the possibility to mark entire domains or single files as read-only
in order to minimise the number of locks requests in the system. Since a large fraction of HEP
data will not be modified after an initial write operation, this is expected to significantly increase
the scalability of the system for very many clients.

3 Status of the Prototype Implementation

A prototype of the ESPRESSO store has been designed and implemented during the last 10 month
as a part time activity by a group 3 developers. In order to achieve this goal we made use of
more recent features of the C++ language namely exceptions, name-spaces and the standard C++
library as defined by the ANSI/ISO standard. Especially the use of STL for all containers and
search structures has significantly sped up the development and led to a more homogeneous coding
style. For the implementation of the networking between client, lock server and data server we
have profited from a portable TCP encapsulation provided as part of the ObjectSpace class library.
The main development platform is Linux with the GNU C++ 2.95.x compiler, but major parts of
the system have also been compiled and tested under Solaris (CC 5.0) and Windows (GNU C++
2.95.x).

To check the performance of ESPRESSO some first benchmarks have been done which show
expected scaling behaviour and prove that even the current prototype with very few optimisation
can perform close to the disk transfer limit. More detailed review of the results refer to [1].

During the next month we plan to extend the scalability tests, to complete the heterogeneity
support for at least one additional platform and to provide a complete HepODBMS implementa-
tion.

4 Conclusion

A prototype of a scalable and performant ODBMS has been designed as part of the RD45 risk
analysis. A set of components and component interfaces have been identified and successfully
implemented with very limited manpower resources. Only very few HEP specific additions are
required to offer significant improvement over todays commercial implementations. We estimate
that a complete implementation assuming manpower resources of the order of 15 part time devel-
opers over a period of three year would be sufficient to provide a production quality implementa-
tion.

Given the broad interest in the availability of an alternative ODBMS implementation not
only in HEP but also other research areas like plasmaphysics, astrophysics it seems feasible to
complete such an implementation in the context of a new collaborative development project on a
time scale suitable for LHC.

References

1 http://wwwinfo.cern.ch/asd/rd45/index.html

2 J. Shiers, “Status Report of the RD45 project”, CHEP 2000, Padova, Winter 2000.
3 D. Quarrie, “Operational Experience with the BaBar Database”, CHEP 2000, Padova, Win-

ter 2000.
4 http://wwwinfo.cern.ch/asd/lhc++/HepODBMS/user-guide/ho.html

5 http://wwwinfo.cern.ch/asd/lhc++/htlguide/htl.html

6 R.G.G. Cattel (editor), “The Object Database Standard ODMG 2.0”, Morgan Kaufmann,
San Francisco 1997.

7 J. Gray, A. Reuter, “Transaction Processing Concepts and Techniques”, Morgan Kaufmann,
San Francisco 1993.

