
A Distributed Rate-Adapting Buffer Cache
for Mass Storage Systems

P. Fuhrmann1, M. Gasthuber1, C.G.Waldman2

1 Deutsches Elektronen-Synchrotron (DESY),Germany
2 Fermi National Laboratory (FNAL),USA

Abstract

To address mass storage needs common to both DESY and Fermilab, a rate-adapting
buffer cache is under development. The aim is to maximize utilization of limited tiary storage
resources by the use of prefetching (read-ahead) and caching of files based on access statistics,
as well as decoupling network transfer rate from tape I/O rate. A modular architecture allows
cache capacity to be dynamically reconfigured by adding or removing ”cache pools”, as well
as allowing the system to work with several different mass storage systems. PNFS is used to
provide the underlying namespace and to store cache-related metadata.

Keywords: cache, mass storage, FNAL, DESY, enstore, osm, Eurostore, pnfs

1 The premise

As service providers for huge amounts of tape space, the DESY and Fermilab mass storage groups
and certainly many other storage devisions in the HEP world are facing an overproportional in-
crease in storage space requirements as well as in the number of concurrent accesses to their tape
repositories. These requirements are by no means compensated by the transaction rate of the cur-
rently available robotic tape libraries nor by their prices. Essentially, Tape Storage providers are
permanently facing two powerful enemies. The Storage clients, treating the system as a large disk,
and the robotic tape libraries, suffering from the intrinsic three-folded unshareability of its com-
ponents (robot, drive and tape). The ideal client would access tape data at the maximum speed the
drive is capable of. It would adjust its average filesize to minimize the NonI/O versus I/O ratio.
For the same reason it would accumulate files up to a reasonable amount before writing them to
the Storage Manager and possibly it would sort read requests according to the order the files re-
side on tape. In addition clients should store files themself on disk if these files are known to be
accessed again. On the other hand, an ideal Storage Manager should be able to simulate unlimited
diskspace with no time offset accessing a particular file. These opposing requirements are hidden,
as long as the available resources cover the ongoing requests. At DESY we are already observing
disharmonies every here and then which still can be solved by helping our clients to make bet-
ter use of the storage system. We assume that within year 2000 this approche will certainly fail.
Fermilab is expecting the same trend within this year as well.

It’s pretty obvious that neither the speed of the robots nor the requirements and the behaviour
of the storage clients can easily be influenced by the local storage groups. Consequently, DESY
and Fermilab took a joined effort to produce an intermediate layer which helps to disarm the
converging requirements listed above.

Eurostore
Enstore

OSM

Storage ManagerDisk Cache

Namespace Provider

Clients

Figure 1: The initial Setup

2 Specification, Requirements and Constraints

2.1 The Specification

From the preliminary considerations, DESY and Fermilab agreed on having the following prop-
erties implemented in a production version of the Disk Cache, subsequently denoted as DC. They
listed properties are discussed later on in more detail.
� Rate-Adaptation The datatransfer between the DC and the Storage Manager has to run on

the drives maximum bandwidth, while the client may chose any convenient data rate to the
DC.

� Deferred Write On a PUT1, the DC has to store data up to a particular amount or until a
time limit is reached before the data is actually sent to the Storage Manager in one chunk.

� Read-ahead The DC reads the requested file from a tape together with a number of subse-
quent files which may not have been requested yet.

� Staging Files or file groups may stay in the DC for a configurable amount of time if it’s
assumed that these files may be used again within a reasonable time interval.

2.2 The Requirements

In addition to the actual specification of the properties of a DC, there are requirements which
reflects the usage of such a device in the real world.
� The usage of a DC only makes sense in an environment where there is a particular pressure

on the Storage Manager. Consequently, because the purpose of the DC is to buffer this
pressure, it has to be hightly scalable. It’s our impression that this can only be achieved by
allowing the DC to be spread among an arbitrary number of hosts.

� On a PUT, the DC will acknowledge the reception of the data on behave of the Storage
Manager before the data is actually on tape. This behaviour requires that the data is at least
as securely stored as on tape. Which means that the particular DC storage areas which are

1The notation PUT/GET in conjunction with a Storage Manager describes the dataflow seen from the client. So, a
PUT means data going into the Storage Manager.

allowed to store PUT data must provide sufficently secure disks (RAID, MIRROR), while
other parts may only serve read requests and therefore are not even required to be under
control of the central Mass Storage Service. The system must be able to distinguish among
these different pools.

2.3 The Constraints

Obviously, the DC must fit into the existing environment at both development sites, DESY and
Fermilab, which on one hand limits the possibilities but on the other hand enforces an amount of
flexibity which will make it easier to adopt the DC to other Storage Managers as well.

� The interconnection of the DC with the on-site Storage Manager should be limited to the
absolute necessary. This allows us to support the Fermilab enstore[5], the DESY OSM as
well as Eurostore[3], a Storage System currently under development at DESY.

� To use a raw Storage Manager there will be always some kind of filesystem-like namespace
provider necessary. At Fermilab and DESY Pnfs[1] is in charge of this task. So it’s not
surprising that the DC requires some of its features.

0

5000

10000

15000

20000

25000

0 50 100 150 200 250 300 350 400 450 500 0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 2 4 6 8 10 12

Filesize / MBytes

Transfer Speed / MBytes/sec

Filesize
Distribution

Transfer Speed

Distribution

Figure 2: A typical Filesize/TransferSpeed Distribution

3 Proving the theory

Figure 2 represents nearly 100000 consecutive requests assembled within 3 weeks from the DESY
STK powderhorn robot equiped with 10 9840 Drives. The datarate distribution, which peaks
around 3 MBytes/sec for a drive type, which provides an average performance of about 9 Mbytes/sec,
gives an impression of the pathological client behaviour. The same is true for the filesizes. About
half the number of files do not exceed 50 Mbytes, which means a transfer time of 6 seconds against
a mount/load/unload/dismount time of about 30 seconds.

To check the improvements of a hypothetical disk cache, we first ran the Rate-Adaptation on
the sample. As a result we found that the drive/tape usage was reduced to 45% of its original value,
mount/dismount included. What appears to be a good result for the drive/tape will certainly push
the robot to its limit because the number of mount/dismounts will roughly double. To partially
relieve the robot of this burden, we assumed the DC to store data up to 400 Mbytes or until
4 hours have passed per StorageGroup2, before writing the data to the Storage Manager in one
chunk. (DeferredWrite). At no time, more than 30 GBytes of disk space had been necessary to
store the data intermediately. This simple scheme reduced the mount/dismount cycles to a third of

2A StorageGroup denotes a set of tapes. It’s the smallest unit the client can specify when writing data.

its original value. The staging feature has not been investigated yet, because each experiment is
running its own staging system. Our intend is to replace those implementations by the Disk Cache.

Nevertheless, the results we were able to retrieve, convinced us of putting more efford into
converting the disk cache prototype into a production version.

4 Under the hood

Finally there are some details listed about the Disk Cache Project and its implementation.
� The Disk Cache Prototype has been designed and implemented in Java by Charles G. Wald-

man3 at DESY/Hamburg.
� The Disk Cache is built on top of a communication package, the DESY-CELLS, which has

been developed by DESY-IT and which is the master building block of the Eurostore[2]
Software as well.

� The Storage Areas of the Disk Cache can be distributed among an arbitrary number of hosts.
Areas can be added and removed dynamically without interference with the running system.
In addition, a mapping can be specified between the Disk Cache Storage Areas and some
units (StorageGroup,File Family) within the Storage Manager. It allows to direct PUT
requests to secure disks (e.g. RAID) and to have different user groups using their private
storage areas.

� Charles has chosen an exponential aging function for files in the Disk Cache Storage Areas.
Frequently a remove-candidate list is produced from which files are taken to free disk space
when actually needed.

� Charles has implemented an FTP server to access the prototype. DESY will add an RFIO-
like access method. It is planned to produce a shared library for the clients talking this
protocol. This library will overwrite the libc i/o functions to allow arbitrary applications to
access the DC without beeing recompiled.

� Statistical information about files are exclusively stored in Pfns (no additional database),
which cares about the synchronization with the namespace and keeps these information
even if the file is currently not in the cache.

� It is planned to allow the assignment of a kind of StickyBit to files or directories4 to inform
the DC that these files should stay on disk regardless of the aging function.

References

1 P.Fuhrmann, “A Perfectly Normal Namespace for the DESY OSM”, CHEP’97, Berlin,
Spring 1997.

2 D.Roweth, P.Fuhrmann, M.Gasthuber, ”Eurostore - Design and First Results”, 16th IEE
Symposium on Mass Storage Systems, 7th NASA Goddard Space Flight Center Conference
on Mass Storage, San Diego, USA, March, 1999

3 D.Roweth, P.Fuhrmann, M.Gasthuber, ”The EuroStore Project - Results and deployment
@DESY”, CHEP2000, Padova, Spring 2000.

4 S.Brand,P.Fuhrmann, ”A distributed disk layer for mass storage at DESY”, Computer
Physics Communications 110(1998) 131-133

5 D.Petravick et al. , ”Enstore Technical Design Document”, Joint Projects Document
JP0026, Fermi National Laboratory.

3Charles is a member of the IT devision of the Fermi National Laboratory. He spent about three months at
DESY/Hamburg to get the prototype finished.

4Pnfs allows to assign any kind of information to the filename entries.

