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Abstract

The CDF Event Data Model describes how CDF C++ and Fortran-77 software may ac-
cess event data in CDF Off-line software. The CDF Event Data Model Working Group has
reviewed the Run I Event Data Model which was based on YBOS data banks stored in a global
array. While this model was successful for Run I analyses, it did not take advantage of the
Object-Oriented design of the CDF Run II Off-line software.

In this paper, we describe the CDF Run II Event Data Model. Event data is passed via
an event record amongst user-written software modules whose execution is coordinated by
the AC++/Framework package. C++ classes meeting a few criteria can have instances stored
in the event record. Objects in the event record are assigned a unique identifier and become
write-locked, key changes in behavior from the old model. Support for storable links, collec-
tions, YBOS banks, and data access by Fortran-77 software are accommodated. The ROOT
Object I/O system is used to read/write the event record to disk files. This model has sim-
plified the effort to make event data persistent, without requiring an overwhelming effort to
retrofit our large, existing code base written to the old event data model.
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1 Introduction

At CDF, event data is defined to be data read from detectors as well as calculated objects based on
that readout which represent the state of the physics event. This does not include calibration data,
alignment data, or the detector geometry description. The CDF Event Data Model determines how
individual elements of event data are accessed, how the event is passed from software component
to software component, and how events are recorded in disk files or memory buffers for the Off-
line, On-line, and Simulation software systems.

Event data analysis jobs at CDF are constructed from software modules whose execution is
directed by Framework1, a software package co-maintained by BaBar and CDF [3]. The repository
of data files is managed by the CDF Data Handling system [6, 7]. Users specify to Framework
which data files are to be used by their analysis job. Framework forwards these requests to the
Data Handling system which in turn stages input files, or reserves space for output files, on a disk
accessible to the analysis job. The Event Data Model implementation manages the reading and
writing of events and access to the objects within an event.

The CDF Event Data Model Working Group was formed in November 1998 to review ex-
isting practice and propose a Run II Event Data Model [1]. CDF had already chosen to use the

1For historical reasons, Framework is often called AC++ at CDF.



ROOT2 package’s Object I/O system[4, 5] to implement our event data I/O. Most CDF software
modules had been or were soon to be rewritten in C++, but they used a C++-based YBOS im-
plementation called Trybos [2] for event data access. Modules written in Fortran-77 and adapted
to the Run II Framework had to continue to be supported in order to validate newly written C++
modules. A large fraction of our developers efforts were devoted to maintaining distinct transient
and persistent versions of the their object classes, due to the limited nature of the YBOS format.
While we sought to support a broader variety of persistent objects consistent with using ROOT
for event data I/O, we also wished to minimize the effort required of our developers to adapt our
existing software to use a new Event Data Model.

2 Event Records and Storable Objects

In the CDF Run II Event Data Model, all event data is passed from module to module via an
instance of the class EventRecord. Event data may not be passed via singletons, global variables,
or common blocks. This insures that, at any module boundary, we can completely and easily
capture the state of the event record. In fact, this aspect of the Event Data Model is not new, but
is now enforced with greater vigilance. Event data can only be read from and written to disk files
and memory buffers by special Framework modules called I/O modules.

Any class which derives from the class StorableObject and meets a few criteria can be
appended to the event record. The class must implement a ROOT Streamer() method which directs
how the object’s state is converted to or from a byte stream which can then be saved to or restored
from a disk file or memory buffer. A class’s header file must be parsable at some level by ROOT’s
rootcint utility, and the class must use the ROOT preprocessor macros ClassDef and ClassImp,
in order to generate the remainder of the I/O support. Storable objects are allocated on the heap
and manipulated through an instance of a Handle class. Handles act like smart pointer classes,
allowing the functionality of the underlying class to be accessed by using the C++ operator � >(),
but avoiding a time-consuming data copy when appending large objects to the event record.

Once appended to the event record, a storable object is assigned an object identifier by the
event record which is guaranteed to be unique throughout the lifetime of that event record. Objects,
once stored in the event record, become write-locked and owned by the event. The write-capable
handle passed to the event record is nullified, and a ConstHandle instance is returned to the user.
Users cannot modify or erase objects in the event record. Users can search for objects by common
attributes, such as class name, object id, creator module, or a user-defined description string. Since
each storable object knows which module created it and under what conditions the module was
executed, the processing history of each object is well-defined.

Rather than erasing objects from the event record, users may specify which objects to output
or not to output to persistent media. A list of objects read in the event is used to initialize a list of
objects to write out. Users may add class names or object identifiers to a “keep” list or to a “drop”
list. All objects referred to by the keep list and not by the drop list are output. Thus, we encourage
all modules to fully label the objects they produce so that the objects can be distinguished by some
other means than mere existence in the event, improving the reproducibility of results.

3 Other Components

Persistent associations are implemented by a Link class. Each link contains both a transient pointer
to the associated object, as well as its object identifier. Links use this object identifier to save their
state. After all objects in an event have been read in, each object has a postread() method called
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during which it may choose to restore the transient pointer in a link data member by searching
the event record for that object identifier. Because of the object identifier uniqueness, an object
associated with another object instance will always be associated with that exact instance. It will
not become associated with a modified or relabeled instance.

A small suite of storable homogeneous containers classes have been developed to sim-
plify the creation and storage of object collections. Each is a template class which is not directly
storable in the event due to rootcint’s inability to treat template classes. These are examples of
StreamableObjects, classes which provide a Streamer() method, but cannot be parsed by rootcint.
A streamable object can be data members of a storable object, and thus can indirectly be stored in
an event record. In this case, a storable object class must contain a particular instantiation of the
template container class. Container classes are provided for storage by value, by reference with
object ownership, and by reference without object ownership, as well as for vector and list-based
containers. Users are permitted access to the underlying Standard Template Library data structure,
allowing Standard Library algorithms to be used on those data structures.

In order to minimize the effort to adapt bank-oriented algorithms to the new Event Data
Model, and enable continued access to YBOS format data files, utilities and I/O modules have
been developed to transform YBOS banks to and from instances of classes derived from the base
class StorableBank. There is a class derived from StorableBank for each bank name present in
the Off-line system, as the bank name determines the data format stored in the bank as well as the
interface to the data in the bank.

We chose as our basic approach to saving and restoring events in ROOT Object I/O system
a simple “sequential” event model. The entire event is stored in one TBranch in one TTree. We
find this adequate for our immediate needs since both the data acquisition system and our event
reconstruction processing will need to read in all objects in every event. In addition we have
created the means to store events in memory buffers using the Streamer() methods for on-line
applications. We expect to make use of multi-branch events in secondary processing where use-
cases justify the added organizational overhead to minimized data access time.

4 Fortran-77 Module Support

Fortran-77 modules are still supported in the CDF Run II Event Data Model, though with some
constraints. At the beginning of execution of a properly adapted Fortran-77 module, all storable
banks in the primary event are transformed into a secondary event, a contiguous array containing
YBOS banks. Storable banks have been designed to mimic the YBOS format in their type descrip-
tion and data sections, reducing the amount of cpu-time required to perform this transformation.
At the end of a properly adapted Fortran-77 module, all YBOS banks in the secondary event are
transformed back into storable banks in the primary event. While this approach, shown in Figure
1, compromises a few tenets of the new Event Data Model, such as write-locking of objects within
the event, our experience has shown that these compromises are tolerable. Those Fortran-77 mod-
ules still in use today tend to be somewhat restricted in their interaction with the event record, and
do not seriously violate the goals of the new Event Data Model.

5 Status

We have completed the core implementation of the Run II Event Data Model, and ported all CDF
Off-line Event Reconstruction modules to be compatible with the model. At the time of this
writing, the first CDF Run II Mock Data Challenge is underway, successfully feeding simulated
events through the high-level on-line triggering system to the event reconstruction farms, splitting
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Figure 1: Support for C++ and F77 modules in CDF Run II Event Data Model

the data into analyzable physics sub-samples. We have managed to do so without undergoing
an overwhelming and risky upheaval in CDF Off-line software, with most algorithms being re-
used or easily adapted to the new model, and with existing YBOS data files remaining usable.
Having reached this milestone, we will begin to optimize our implementation of sequential event
I/O using ROOT, adapt to a newly-arrived package which records creating modules and related
conditions for each object, consider more expressive means to search for objects within the event,
and improve user documentation and tutorials.
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