
The Data Access Layer for D0 Run II:
Design and Features of SAM

Lee Lueking1, Heidi Schellman2, Igor Terekhov1, Julie Trumbo1, Siniša Veseli1, Matthew
Vranicar1, Richard Wellner1, Stephen White1, Victoria White1

1 Fermilab, Batavia Illinois, USA
2 Northwestern University, Evanston Illinois, ,USA

Abstract

The Sequential Access Model, or SAM, is the data access layer being built for Run II data
handling at Dzero. An overview of the Dzero data handling system and a description of the
data access software being built are given. At the center of the data management system is an
RDBMS which is used to track file-based data and trace processing steps and usage patterns.
The procedures by which data is added to the system and distributed to users are described.
SAM is a functioning system and much operational experience has been gained running it.
Additional features are planned to be added before the Fermilab collider run begins in spring
of 2001.

Keywords: data storage,data access,RDBMS,CORBA,distributed systems

1 Introduction

The Sequential Access Model, or SAM, is the data access layer that is being built for Run II data
handling at D0. It requires the mass storage services of a separate Run II component, the Enstore
mass storage system [2], also developed at Fermilab. SAM’s goals are to provide a straightforward
interface for users of both batch and interactive applications, to provide a robust and easily accessi-
ble database for locating and describing datasets, to archive descriptions of data analysis projects,
to promote efficient use of computing and network resources, and to help optimize performance
from the data storage and delivery system. Although it has been built with D0’s requirements for
Run II in mind, its design is not D0 specific.

Details of the hardware configuration are shown in Figure 1. Tape drives are served tapes in
an ADIC AML/2 robot. These drives are attached to mover nodes which are attached to the net-
work through Fast Ethernet connections to a central network switch. Gigabit Ethernet connections
are made to the switch for the on-line DAQ, Central Analysis Server, Reconstruction Farm and
Database Server machines. Several test facilities are also shown in the illustration. The software
which is employed to operate the system includes a user interface and access layer, SAM, the Mass
storage layer, Enstore, and various batch and lower levels which operate the individual components
of the system.

2 Database

A commercial RDBMS is used to maintain a carefully designed schema which includes event, file,
processing and required physics information. The database chosen was ORACLE because a ro-
bust and mature product was essential to the longterm stability of the system. Also, the size of the
database is anticipated to be several hundred GB, and many features in Oracle are useful in man-
aging a repository of this magnitude. In addition, Oracle offers many tools needed to design and
implement the database as well as to tune and monitor its operation.

Rate Sensitive D0 systems, 10/1/99

D0

FCC

RIP4 TRU64

AML/2

D0 FCC
CISCO 6509
"BIG A"
Switch

D0mino Production

D0ORA2

Prototype Farm

D0 Production Farm

Online CISCO 6509

Other Assembly BuildingOther PortaKamp

Legend
GigaBit Ethernet

100mbs Ethernet

Out of Scope

6

SCSI

 I/O
Node

Worker
Nodes

50

DAQ Back End

F
o
u
n
d
r
y

F
o
u
n
d
r
y

io

Worker
Nodes24io

io

io

D0mino
SNMP
Machine

Vendor Disk
100GB

PAH BID Disk

Not in place as of July-1-1999

Not in place as of May 1, 1999

Substanial Uncertainty

3

RIP Cluster

10

Private
Hub

8

SAM Cluster
8

FCC-TEST
FCC

DMPS

D02KA

SCSI Disk

SNMP
Machine

D0 Enstore Operator Mount
To Be specified

10 Dual Pentium

1 Console Server

Sun Ultrasparc 10

SGI O200

D0ORA1

CD mainframe
Switch

DROID Online
 Test System

8Dual Pentium
1 DEC alpha

RIP 9

2

ADIC3

2 2
MAM DLT AIT

2

ANDADACO ANDADACO ANDADACO

TRU64

ANDADACO ANDADACO ANDADACO

TRU64

ANDADACO ANDADACO ANDADACO

72 GB DiskSNMP
Machine

360 GB JBOD

FC-AL

DATA

Interactive
4

DAQ -
Enstore
Data ONLY

General
TransfersAssembly Building

 CISCO 6509

General
Transfers

Interactive

DATA

FARM DATA I/O

Need to modify, exact relationship to backbone?

FBS host

D0test

3/1

2/3

DATA

Interactive
4

 36

ADIC2
Need to modify private Net

ADIC2

Need to modify private Net

18

D0 Enstore Cluster - South

D0ENMVR1 D0ENMVR1
D0ENMVR1

D0ENSRV1

D0ensrv2

DB DISK

D0ensrv3

D0 Enstore Cluster - North

10

8

100mbit: 144
1Gbit: 14

D0encons1

FCC1
Catalyst 2948g

 CISCO 8540
Rest of the World

Figure 1: The data storage and delivery system is entirely network distributed with many hardware compo-

nents and network connections. Shown are the AML/2 robot and mover nodes (left), the Cisco network switch

(center), and the central analysis server, database servers, and reconstruction farm (right). At the top is the

on-line system, and at the bottom are several test and development systems.

The schema has been designed to catalog event, file, various run and physics information.
The simplified schema is illustrated in Figure 2. It allows tracking data through a wide variety of
complex processing steps, and tracing lineage from detector or Monte Carlo files through analysis
stages. Information crucial to many types of analysis, such as trigger, luminosity, and accelerator
conditions are available through the system. Also, information about the location of files, on tape
or disk cache, is used to optimize the performance of the overall system.

3 Implementation and Features

SAM is a fully distributed system using a client-server architecture. Communication between the
many servers and their clients is done via CORBA. One of the principal servers manages all com-
munication with the ORACLE database, another manages data delivery to multiple client data-file
consumers running on various platforms, another is responsible for managing storage of data, and
others actually interact with the underlying storage system, Enstore, to effect data movement be-
tween a file system and tape. Resource management servers cluster and re-order work for the stor-
age system to minimize tape mounts, interact with the Batch system, and manage disk caches and
disk cache policies. Additional servers collect information from the system at large, analyze and
present information, and provide other important functions related to resource management. The
servers are written in C++ and Python. Clients are written using Python, C++, and Java. Curren-
t implementations, running on Irix, Linux and OSF1, use ORBacus, a lightweight but robust C++
and Java CORBA implementation, available free with full source code for non-commercial use [5].

SAM Simplified Schema

Files
ID

Name
Format

Size
Events

Events
ID

Event Number
Trigger L1
Trigger L2
Trigger L3

Off-line Filter
Thumbnail

Disk Cache/
TapeVolume

Project

Data Tier

Physical
Data Stream

Trigger
Configuration

Creation &
Processing

Info

Run

Event-File
Catalog

Run
Conditions

Luminosity

Calibration

Alignment

Station
Project

Station

Figure 2: The SAM database schema provides information about the locations of files, processing stages,

and group and user data usage profiles. This information is used to provide access to the data, and also

optimize the use of resources.

Python clients and servers use the fnorb CORBA implementation [6].
All SAM user functions, such as defining the dataset to be analyzed, starting delivery, reg-

istering to receive files, storing data files, etc. are available from the command line. In addition
read/write access to data files has been seamlessly integrated into the D0 analysis framework [3],
and the D0 persistency mechanism d0om [4] through a standard framework package for SAM.
Transparently to other framework packages, the SAM package handles open/close file events and
communicates with the SAM system to receive/store files.

The SAM system has now been integrated with Enstore and with the D0 analysis system, and
is being used for testing and for D0 Monte Carlo data management. Its feature list includes 1) data
storage on tape and disk cache(s), 2) data description storage in an ORACLE database including a
detailed event catalog for raw detector data, and other selected data files, and storage of parameter
files 3) data delivery to multiple and coordinated users, 4) storage and re-use of pre-defined data
queries 5) command line interface to all user functions 6) GUI interface to applicable functions 7)
web-based database browsing tools, 8) disk cache and buffer management, and 9) administration
and monitoring tools. Several additional features are planned over the next 6 months, including
a facility for extracting and providing single events, additional recovery and restart features, and
greater support for remote-site installations of the system.

4 Status and Experience

The system is documented and being used to store Monte Carlo data and by D0 physicists to per-
form analyses tasks. The home page for the SAM system can be found at [1], and for Enstore at [2],
these include documentation and other information about the operation of the systems. To date we
have stored over 1.5 TB on Mammoth I tapes in the robot, and have observed cumulative transfers
in and out of the robot as high as 1.2 TB in one day. Data is added to the system by providing a
description file which includes information about the parentage, size, and physics parameters for

files. These parameters are used to add catalog information to the database, and then the data files
are transfered to the robot. A mechanism is also provided for adding data tapes directly to the robot
and storing a meta-data file to the Enstore system which provides the system with information need-
ed to transparently access the data later. Also tapes can be written and ejected from the robot and
sent to remote sites for analysis. These features are illustrated in Figure 3. To exercise the system,
Monte Carlo data from Lyon, Amsterdam, Prague, as well as Fermilab is being imported into the
system, mostly over the network up to now, but soon data will be imported on tape also.

A test harness is rapidly evolving. This simulates use of the system by multiple clients s-
toring and retrieving data and running across all of the systems involved - from the online logger
systems, to the production processing farms, to the central analysis server and additional smaller
Linux servers. Although the throughput of the storage system is currently limited by the number
and type of tape drives available, Enstore provides facilities for sinking data and delivering ran-
dom data at full 10MB/sec/tape rate, and these can be used for some of the scalability tests of the
system.

Data Import/Access/Export

Data

Enstore

SAM

Access
(sync)

Project
request

File
Request

Data Transfer

Volume
info

SAM Metadata
Export

SAM Metadata

File Import

Enstore Metadata

Tape Import

Enstore Metadata

Tape Export

Figure 3: Data is added to the system, either from disk-files, or tape-files by supplying a description file to

the SAM system. Data can be accessed through the SAM system, and can be exported to remote sites on

tape if desired.

5 Conclusion

A large part of the data management and access system for the Dzero Run II has been built and is
being tested. The system is able to store, catalog, and access data which is being imported form
all over the world. The system includes many useful features now, and several additional ones are
planned to be added in the next few months. So far the system is working well, and we continue to
test and push its performance under heavier loads and larger data sizes. We hope to shortly demon-
strate the full scalability of the system up to its design goal, namely movement of data in/out of the
underlying storage system at 200MB/sec, including at least 150 MB/sec data transfers into the D0
central analysis system and 30 MB/sec in/out to the production farm system.

References

1 “The Sam Home Page”, http://d0db.fnal.gov/sam
2 “The Enstore Home Page”, http://www-isd.fnal.gov/enstore/
3 J. Kowalkowski,”The D0 Framework”, CHEP2000 presentation.
4 “The d0 object management system: D0om”, http://www-d0.fnal.gov/newd0/

d0atwork/computing/infrastructure/d0om/d0om.html

5 “ORBacus for c++ and java”, http://www.ooc.com
6 “fnorb, a python ORB”, http://www.fnorb.org

