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Abstract

In the summer of 1999, ATLAS undertook a pilot project to develop object-oriented soft-
ware that would simultaneously support tile calorimeter testbeam data analysis and provide
a testbed for evaluation of candidate ATLAS software strategies. Strategies related to object
persistence and to transient/persistent separation were of particular interest.

Among the distinctive features of the resulting architecture are its detector-centric view,
which allows physicists to focus on the detector when appropriate and permits the event mod-
el to remain opaque, and its ability to support multiple distinct transient/persistent mapping
strategies concurrently. The software has been successfully applied to analysis of 1998 and
1999 ATLAS tile calorimeter testbeam data, with both input and output data stored in an
object database.?

Keywords: object persistence, databases, detector models

1 Background

In the spring of 1999, a review of ATLAS software produced a recommendation that ATLAS adopt
a software strategy that would keep physics codes, insofar as possible, independent of database
supplier, while not altering the ATLAS baseline database strategy, which was (and is) to use the
Objectivity/DB commercial object-oriented database product. ATLAS had by that time accrued
some experience in the use of Objectivity, including a one-terabyte test in December 1998, but
Objectivity had not yet been used in an ATLAS production setting. At the same time, S. Solodkhov
(Protvino) had begun an effort to store raw data from ATLAS tile calorimeter testbeam runs in an
Objectivity database.

With these developments in mind, a pilot project was undertaken to use tile calorimeter
testbeam data for a variety of purposes: as a means to gain production experience with Objectiv-
ity, as a testbed for ATLAS software strategies, particularly for approaches to transient/persistent
mapping, and as a way to involve physicists in the use (and development) of object-oriented soft-
ware. The time to accomplish this was somewhat less than two months (tile testbeam data-taking
resumed in July 1999), and a specific requirement was that the software be able to support the
activities (calibration and analysis) of tile testbeam physicists.

2 Software Functionality

The pilot project software provides an architecture for access to data acquired during the 1998
and 1999 ATLAS tile calorimeter testbeam runs. It serves as a tool for data analysis in C++, for
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calibration studies, for optimal filtering, and for building customized n-tuples for later analysis or
histogramming via external analysis tools.

Data are stored in an object database. Raw data, calibrated data, and calibration constants
(e.g., ADC time samples; energy, charge, transverse energy for a module and any of its constituent
elements; timings, charge injection calibration constants) are available through the framework.

For a given run or other event collection, quantities such as a detector element’s energy may
come from the database if a calibration has already been applied, from dynamic application of a
default calibration strategy, or from application of a custom calibration strategy. Physicists may
not only read from the database, but may write to it, saving, for example, the results of applying
their own custom calibrations as a named event collection.

3 Design Principles

Maintain a detector-centric view. This is a fundamental design choice, and strongly influences the
way in which physicists interact in software with detector and event data. In a detector-centric
view, the detector has primacy. Events are stimuli to which one wishes to understand the detec-
tor’s response. In an event-centric view, the event has primacy. The role of the detector is to help
describe and understand the event. Though these views are duals of one another, and transfor-
mations from one view to the other are certainly possible, the difference in emphasis does have
implications. For testbeam data analysis, a detector-centric view is natural.

Keep the event as opaque as possible. Physicists navigate through the detector, not through
the event, to reach and gather data of interest. The detector-centric view allows us, in practice, to
keep the event quite opaque–physicists never need to know the shape or content of an event, or how
data are organized within the event. This approach is not only consonant with the detector-centric
view, but provides the further advantage that software development in the subsystem testbeam
community can proceed without fear of significant divergence from ongoing efforts in the core
software community to define an event model common to all ATLAS software.

Describe the detector as a logical hierarchy of identifiable detector elements, using the
proposed ATLAS hierarchical identifier scheme. In the tile calorimeter, for example, the barrel
consists of modules (in �) which are divided into sides, which are further divided into towers (by
pseudo-rapidity), in which there are several cells (sampling layers) read out by PMTs connected
in turn to ADCs. A unique, variable-length sequence of integers based on ATLAS conventions
can be used to identify any element in this hierarchy; this identifier can be stored compactly and
managed efficiently by means of an ATLAS Identifier class.

Detector elements are instantiated only on demand. Instantiating a calorimeter module, for
example, does not require instantiating every side, tower, cell, PMT, and ADC therein. This has
performance implications.

Maintain transient/persistent separation. Physicists see only a transient model of calorime-
ter, event, and other data. How these data are organized in the underlying database is never ex-
posed to the client; moreover, references to persistent data objects, whether Objectivity-specific
(like ooHandles) or not (like HepODBMS HepRefs) do not appear in physics programs. This
strategy is consonant with ATLAS review committee recommendations described above.

4 Examples

The following code fragment illustrates the detector-centric view presented by the pilot project
software.

TileEventIterator iter;



for (iter = myRun.begin(); iter != myRun.end(); ++iter) {

// stimulate the calorimeter with the current event

myCalorimeter.associate_event(*iter);

std::cout<<"PMT "<<(pmt1->id())<<" energy is ";

std::cout<<"pmt1->energy()<<" , timing is "<<pmt->timing()<<endl;

std::cout<<"Cell "<<(cell3->id())<<" energy is ";

std::cout<<cell3->energy()<<endl;

// and so on for any module, tower, cell, pmt, adc, ...

}

Runs support an event collection interface, and provide event-at-a-time access by means of
an iterator with the characteristics of an STL (C++ Standard Template Library) forward iterator.
Detector elements of interest to the testbeam data analyst–individual PMTs, ADCs, and so on–
are typically instantiated once only outside the event loop. Associating the current event with
the calorimeter has the same effect as an implicit update of the states of all detector elements–an
instance of a PMT object will return the energy corresponding to the current event. The physicist
does not need to interact with the event object in any way to navigate to the data corresponding to
a particular detector element.

While raw data (e.g., multiple time samples per ADC), calibrated data (e.g., PMT energies),
and calibration data (e.g., charge injection calibration constants per ADC) are in fact stored quite
differently and in different parts of the underlying database, access to such data follows exactly the
same pattern: the physicist simply invokes a given TileADC’s samples() or energy() or cis calib()
method in the middle of an event loop, and retrieves the corresponding data.

Comparing calibrations is no more difficult. Default calibration strategy objects are sup-
plied, and users may also provide their own. (A template of a calibration strategy object, and an
example of how to write one’s own, are provided with the software release.) All that is required is
to associate the calibration strategy object with the calorimeter. The following example illustrates
this approach inside an elementary event loop:

TileEventIterator iter;

for (iter = myRun.begin(); iter != myRun.end(); ++iter) {

// stimulate the calorimeter with the current event

myCalorimeter.associate_event(*iter);

// your favorite calibration strategy

myCalorimeter.associate_calib_strategy(&strategy1);

std::cout<<"PMT "<<(pmt1->id())<<" energy is ";

std::cout<<"pmt1->energy()<<" , timing is "<<pmt->timing()<<endl;

// an alternative calibration strategy

myCalorimeter.associate_calib_strategy(&strategy2);

std::cout<<"PMT "<<(pmt1->id())<<" energy is ";

std::cout<<"pmt1->energy()<<" , timing is "<<pmt->timing()<<endl;

}

5 Transient/Persistent Mapping

Because the software is intended to serve as a testbed for core database technologies, it implements
a variety of approaches to transient/persistent mapping concurrently. The most common of these
are variations on three-layer and (2 + �)-layer architectures, with a transient layer (objects as seen



by physicists and their programs), a persistent layer (objects as stored by the database), and a
mapping layer in between. In their usual incarnations, transient objects hold exactly one data
member–a pointer to the adapter object.

A wide variety of strategies are possible even in such a simple scheme. Adapters may
be nothing more than structs containing d Refs or HepRefs to persistent objects, and forwarding
of pointer dereferences may be readily inlined. Adapters may handle one-to-one, many-to-one,
and many-to-many mappings (all TileADCs may share a single adapter, for example, with their
data aggregated in a single persistent object; a single ADC’s raw data and calibration constants
may come from different places in the database via a single adapter). Adapters may choose to
create transient versions of persistent objects to avoid overly frequent references to the database.
Adapters may be polymorphic–different concrete adapters derived from the same adapter base
class may offer different implementations, or even point to different data stores.

A full discussion of the scope of transient/persistent mapping strategies explored in this
testbed is beyond the scope of this short paper.

6 Status

The software described above has been adopted for use by the ATLAS tile calorimeter testbeam
community. Extensions are underway to provide access to muon wall and beam data, and to
coordinate improvements with evolution of the underlying raw data model. If sufficient manpower
can be identified, the software may be adapted for use by ATLAS liquid argon testbeam physicists
as well. The data access software continues to be used as a testbed for ATLAS core database
technologies.
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