
Sun Microsystems’ AutoClient and management of computer farms
at BaBar

A.V. Telnov1;2, S. Luitz3, T.J. Pavel3, O.H. Saxton3, M.R. Simonson3

1 Lawrence Berkeley National Laboratory, USA
2 University of California at Berkeley, USA
3 Stanford Linear Accelerator Center, USA

Abstract

Modern HEP experiments require immense amounts of computing power. In the BaBar
experiment at SLAC, most of it is provided by Solaris SPARC systems. AutoClient, a product
of Sun Microsystems, was designed to make setting up and managing large numbers of So-
laris systems more straightforward. AutoClient machines keep all filesystems, except swap,
on a server and employ CacheFS to cache them onto a local disk, which makes them Field
Replaceable Units with performance of stand-alone systems. We began exploring the tech-
nology in Summer 1998, and currently operate online, reconstruction, analysis and console
AutoClient farms with the total number of nodes exceeding 400. Although the technology has
been available since 1995, it has not been widely used, and the available documentation does
not adequately cover many important details of AutoClient installation and management. This
paper discusses various aspects of our experience with AutoClient, including tips and tricks,
performance and maintainability, scalability and server requirements, existing problems and
possible future enhancements.

Keywords: farm, sun, solaris, autoclient, cachefs, babar, slac, fru, field replaceable unit

1 Introduction

Having to administer a large number of workstations has long been a headache to system ad-
ministrators working for big businesses, universities and research laboratories. In the case of
UNIX-style operating systems, system maintenance tasks can very rarely be delegated to the end
users, which means that the whole burden of taking care of the company’s computers falls on the
system administrators. Unless some kind of special system maintenance scheme is devised, the
required administration effort scales linearly with the number of machines and a synchronous ma-
jor software upgrade is essentially impossible (unless, of course, the company employs an army
of sysadmins and the upgrade takes place during the Christmas shutdown).

The BaB̄ar experiment1, which began operation at the Stanford Linear Accelerator Center
in 1999, requires an immense amount of computing power, most of which is currently provided
by Solaris SPARC systems. The 300+ -node Analysis and Prompt Reconstruction farm — and
especially the 79-node Online Data Flow farm — perform tasks that are critical for experiment
operation and demand minimal downtime in case of a hardware malfunction, operating system
crash, or a software upgrade.

Without using any special scripts or system administration tools, setting up a Sun Solaris
stand-alone “from scratch” and configuring it to make the best use of the SLAC computing en-
vironment (AFS, NIS, AMD, etc.) and to conform to certain security standards (ssh, sudo,
sendmail, disabling telnet and rlogin, applying patches) is a task that takes at least 10 hours,

1BaB̄ar homepage: http://www.slac.stanford.edu/BFROOT/.



of which 3 to 5 hours require active administrator involvement. Tailor — a collection of sys-
tem administration tools developed by the SLAC Computing Services over the past 10 years for
many flavors and versions of UNIX — greatly simplifies integration of a UNIX workstation into
the SLAC environment and saves a lot of time: the process takes 3 to 5 hours with periodical
administrator involvement totalling about 1 hour per machine.

But even with the help of tailor, managing such a large number of machines is a formidable
task, so in Summer 1998 we started looking for ways to make deployment or replacement of So-
laris machines faster and system management more straightforward. The three techniques that
we have come up with are 1) “non-invasive” hard drive cloning with the help of the Diskless
Client technology2, which allows us to make a fully functional copy of a ‘tailored’ Solaris
stand-alone system in about 20 minutes (including changing identity information); 2) A combina-
tion of tailor and Sun’s JumpStart3, which requires a network installation server with custom
install/finish scripts that allow tailoring to take place without administrator intervention (this
technique of making a Solaris stand-alone takes about 1 hour plus 30 to 60 minutes to initialize
the AFS cache); and 3) Sun Microsystems’ AutoClient, which will be discussed in the rest of this
article.

2 Overview of AutoClient4

Sun Microsystems AutoClient and AdminSuite products were designed to centralize and simplify
administration of a large number of Solaris workstations. To understand what an AutoClient is,
let’s compare it with a stand-alone system and a diskless client:

Table I: AutoClient vs. Diskless Client and stand-alone systems
System Type Local File Systems Local

Swap?

Remote File Systems Network

Use

Relative

Performance

Stand-alone

System

root (/), /usr, /opt,

/export/home

Yes -none- (meaning “not

necessary”)

Low High

Diskless

Client

-none- No root (/), swap, /usr, /opt,

/home

High Low

AutoClient

System

cached root (/), cached

/usr, cached /opt

Yes root (/), /usr, /opt, /home Low High

AutoClient allows us to keep all clients’ file systems, except swap, on the AutoClient Server
and locally cache root (/) and the shared read-only /usr and /opt using the CacheFS technology,
which is the most important component of AutoClient.

CacheFS caches files that have been accessed by the AutoClient, so that subsequent requests
to the same files get referenced to the cache rather than being sent to the server. A cache consis-
tency check is performed every 24 hours by a cron job running on the AutoClient, on reboot, or at
request. All writes immediately update the back file system on the server, unless the AutoClient is
configured as ‘disconnectable’ and the server is temporarily unavailable. This consistency check
policy relies on the assumption that the cached file systems do not get changed from the server
side except in rare cases by the administrator who explicitly requests a consistency check after he
is done. Specific files or directories can be packed into the CacheFS cache, which guarantees that

2The process is described in detail in [1], section 5.
3The JumpStart technology is described in the SPARC: Installing Solaris Software manual from Sun Microsystems.
4For a more detailed discussion, please refer to [1] and [2].



they will always be in the cache and will not be purged if the cache becomes full. This feature can
be particularly useful with ‘disconnectable’ clients.

In a nutshell, an AutoClient system has all the advantages of a diskless client (with the ex-
ception of not needing a hard drive) while not putting a heavy load on the network and possessing
performance closely matching that of a stand-alone system.

Since AutoClients do not require any swap space on the server and share /usr and /opt

filesystems5, each AutoClient requires only about 40 MB of space on the server for its root file
system. In order to backup each AutoClient system, we only need to backup the server. We
also can manipulate AutoClient root file systems (read log files, apply patches, etc.) directly
from the server. AutoClients can be configured to be disconnectable, which means that they will
continue to function using their cached filesystems while the server is temporarily unavailable.
AutoClients can be halted and rebooted remotely; they reboot directly from the cache, so the
network traffic during a system-wide reboot is limited to a cache consistency check. Since no
persistent information is stored on the AutoClient itself, it can be considered a field-replaceable
unit (FRU). Replacing a failed unit or deploying a new AutoClient takes just a few minutes6. Most
of the management tasks normally associated with stand-alone Solaris systems are thus almost
completely eliminated.

The quintessence of the centralized administration model, of which AutoClient is a key
component, is a significant reduction of the cost of management — that is, if everything works as
advertised.

3 BaB̄ar’s experience with AutoClient

We started experimenting with AutoClient in June 1998, about a year before BāBar took its first
e
+
e
� collision data. Our first AutoClient server and two dozen or so AutoClients were Ultra-

5’s with a 270 MHz UltraSPARC-IIi CPU, 128 MB RAM and a 4.3 GB 5,400 rpm EIDE HDD
running Solaris 2.6 HW 3/98; we used this prototype AutoClient farm as console and Online Data
Flow machines during the Winter 1998/99 BaB̄ar cosmic ray run. In order to speed up creation
of additional AutoClients, we developed a set of scripts that ‘clone’ the root file system of a fully
configured AutoClient, modify identity-related files in /export/root/clientname , and make
necessary adjustments to the server configuration files — all in about one minute.

Although the process of configuring the server and the first fully functional client was quite
bumpy (mostly having to do with getting proper patches installed, see [1]), we were satisfied
with the farm’s performance and decided to use the AutoClient technology on all BāBar computer
farms at SLAC. At this time (January 2000), there are 309 AutoClients7 on 6 AutoClient Servers8

in the Analysis and Prompt Reconstruction farm, which is located in the SCS building, and 100
AutoClients9 and 1 AutoClient Server10 in the Online Data Flow and console farms, which are
located in the IR-2 building that houses the BaB̄ar detector.

So, we have been operating over 400 AutoClients under real life conditions (running online,
prompt reconstruction and analysis jobs around the clock at close to 100% capacity) for about 8

5The AutoClient Server can also be configured to serve its own /usr and /opt to the AutoClients.
6Plus, if AFS is used, the time required to build a new local AFS cache.
7Currently, Ultra 5’s with a 333 MHz UltraSPARC-IIi CPU, a 9.1 GB EIDE HDD and 256 MB RAM, soon to be

replaced with rack-mountable Netra t1’s with a 440 MHz UltraSPARC IIi CPU, two 9.0 GB 10,000 rpm SCSI HDDs
and 256 MB RAM.

8Ultra 2’s with two 296 MHz UltraSPARC II CPUs and 9.0 GB SCSI HDDs.
9Mostly Ultra 5’s with a 333 MHz UltraSPARC-IIi CPU, a 9.1 GB EIDE HDD and 512 MB RAM.

10An Enterprise 450 server with four 296 MHz UltraSPARC-II CPUs, 2 GB RAM, two 4.2 GB SCSI HDDs and four
188 GB Baydel RAID Level 3 arrays.



months. Overall, the farms performed their goals very well. However, the required management
effort turned out to be much bigger than we expected, primarily because of a bug in CacheFS,
which has been identified by Sun Microsystems. A fix for this bug is reportedly available for
Solaris 7, but Sun still has not been able to come up with a fix for Solaris 2.6 that BāBar is
currently using.

The bug leads to cache corruption and, occasionally, to disappearance of files on the client’s
root file system during power outages or if connection to the server is lost due to a server reboot
or crash or a network outage, probably only if the AutoClient was in the process of writing into a
file. Such accidents have so far occurred about one a week, and each time about 15-20% of Auto-
Clients had to be manually rebooted with the boot -f command that forces cache reconstruction;
sometimes an AutoClient had to be recloned. This means that after an outage the status of each
AutoClient has to be checked manually or all AutoClients have to be rebooted with boot -f —
either way, this takes a lot of time.

It also turns out that while in most cases a Solaris stand-alone system does not have to be
rebooted after a patch is applied to it, AutoClients often do, the reason being differences in the
UFS and NFS file locking mechanisms. An AutoClient system has to be idle before patching takes
place — otherwise running applications can crash; a global farm outage has to be scheduled to
patch /usr.

We have undertaken several measures to minimize the impact of the outages: the AutoClient
Servers and network equipment at SCS have been connected to UPS power; the network topology
has been modified to remove path redundancies that under certain circumstances can lead to brief
periods of network unavailability. We have also realized that putting the responsibility of being
the AutoClient Server on the main IR-2 server was a big mistake because it often crashed due a
kernel memory leak or had to be rebooted.

3.1 Conclusion

At this point, we are quite disappointed by our experience with AutoClient, and unless Sun fixes the
CacheFS bug in the nearest future, we will replace AutoClients in the SCS farm with Solaris stand-
alone systems which will be net-booted from a net-install server using JumpStart and tailor; the
recovery strategy in this case would be to reinstall. We are far from certain whether we will
completely drop the AutoClient technology and think that it has a great potential, so we want to
try the more classical approach and see how the management effort compares to using AutoClient.
The main goal of our presentation at CHEP 2000 was to make the High Energy Physics community
aware of AutoClient’s existence, its pros and cons, and our experience with it — and let you decide
whether you want to try it out or not. We hope that this goal has been achieved.

References

1 A.V. Telnov, “Management of computer farms at BaBar”, BaBar Note #446, March 29,
1999. This note can be downloaded from [2].

2 More information on the use of AutoClient in the BaB̄ar experiment along with
a collection of Solaris-related documentation in PDF format can be found at
http://www.slac.stanford.edu/BFROOT/www/Computing/Environment/Admin/

AutoClient/AutoClient.html.


