
Monitoring and Management of Large
Distributed Computing Systems at FERMILAB

E. Berman, L.L. Carpenter, J. Fromm, K. Genser, L. Giaccheti, T. Jones, T. Levshina,
I. Mandrichencko, S. Naymola, D. Petravick, R. Thies, R. Thompson

Fermi National Accelarator Labortory,
Batavia,Illinois, USA

Abstract

The computing needs for future projects at Fermilab will include thousands of computers.
This will add to the complexities of operating and managing of a large computing facility. The
need for a Distributed Management System (DMS), that is able to efficiently run Fermilab’s
computing systems, has been recognized and investigations of these types of systems have be-
gun. The comprehensive set of requirements has been defined. Several available products have
been evaluated based on the proposed requirements. The proposal to develop proprietary DMS
is now under consideration because none of the evaluated products fully satisfied the require-
ments.

Keywords: distributed management system, network, SNMP, alarm

1 Introduction

The rapid increase in number of computers for Fixed Target experiments and changes for Run II
computing add to the complexities of operating and managing of a large computing facility at Fer-
milab. The Next Generation Operations working group (NGOP) was gathering the requirements
for the distributed management system for quite some time. We were looking for pro-active tools
that provide self-management of different operatin systems (OS) and mission-critical applications.
This paper provides the evaluation and comparison of a few available management systems.

2 Requirements

2.1 Key definitions

We define here basic terminology that will be used throughout the paper:

� Monitoring Object is one of the following:
– Host - computer identified by its full domain name
– Cluster - collection of Hosts
– Component - atomic element that has a well defined behavior
– System - collection of Components

� Object Tree - hierarchy of Monitoring Objects

� Condition - predefined state of Monitoring Object

� Event- description of detected condition that could include Host, Cluster, System,
Severity, date etc.

� Action - activity initiated by DMS depending on the event, configuration, current day/time
etc. in order to somehow correct the problem.

� Alarm- asynchronous indicator generated by DMS upon event reception based on alarm con-
figuration.



� Monitoring Agent (MA) - daemon process that is running on a host and able to generate
event based on condition and perform predefined actions.

2.2 Essential features

The following DMS features have been defined as essential by NGOP . The system should

� be based on industry standards (e.g. SNMP) and provide self-management of different OSs(
such as Irix, Aix, HP, Linux, SunOs, and NT) and mission-critical applications.

� be able to detect hardware, network, system and application problems.
� supply basic information such as system daemons status (e.g inetd, syslogd), CPU utiliza-

tion/load, number of processes and users , runaway processes, network traffic , size of critical
file systems, system log errors/warnings (e.g. automount failures), security breaches.

� be scalable up to 1000s of hosts, handle multiple users (e.g. data center personnel, system
administrators)

� be secure and support different user authorization levels
� provide the hook for user defined monitoring tools
� generate alarm based on severity of the event
� perform ”healing” actions

� provide monitoring via Web browser as well as via GUI or command line interface.
� be able to dynamically configure monitoring systems, alarm severity, notification methods
� provide hierarchical view of the entire monitoring system
� restore it configuration across reboots.
� provide qualitative descriptor of ”special” node state such as known bad, off-line, etc...

2.3 Important and desirable features

NGOP outlined a few import and desirable features such as DMS ability to handle overlapping clus-
ters, provide means to generate reports and statistics based on selected criteria, supply contextual
on-screen help, implement step-by-step notification regarding performed actions.

3 Evaluated Products

3.1 Why not commercial products?

Based on NGOP analysis of existing commercial software, we came to conclusion that most of the
commercial management products would provide limited off-shelf functionality. The substantial
efforts and human resources would be required during the installation and customization of the
software. In addtion the purchase of third-party products is often necessary in order to gain better
scalability via Web integration and more off-shelf functionality [1]. The high initial and support
cost of the commercial software was considered as well. Those were the reasons why we decided
to focus our efforts on evaluation of free DMS products.

3.2 Freeware Products

We have evaluated several freeware products such as patrol1 [2], scotty/tkinter2 [3], nocol3 [4]
and netlogger4 [5]. The evaluation and comparison of these products are listed in the table below:

1developed at SLAC/DESY
2developed at Technical University of Braunschweig /Network Management Group
3developed at Netplex Tecnologies Inc
4developed at Lawerence Berkeley NationalLab/Future Technologies Group



Table I: Products Evaluation and Comparison

Products Patrol Scotty Nocol Netlogger
Ported OSs Irix, HPUX SunOs, Ultrix, SunOs, Solaris, SunOs, Linux,

AIX, SunOS, Irix, Aix,HPUX OSF, neXt, Irix
OSF, Linux Solaris, Linux, Linux, Ultrix

Language/ Perl, Java Tcl,Tk, C C, Perl, curses C, C++, Java,
Products Script Perl, Tk, Tcl,flex,
Dependency bison, pthread
Off-Shelf Process,Host, SNMP,ICMP, SNMP,ICMP,DNS, SNMP,ICMP,
Functionality File System DNS,RPC,NIS, DNS, RPC, TCP ports Netsat,Vmstat,

Info NTP,UDP Ethernet load, Iostat
Off-shelf Writes messages Writes messages Invokes predefined Can not per-
Functionality to syslog, sends to syslog, periodi- job upon event form action.
(Action) mail, page, kills, cally invokes reception.

restarts process predefined jobs.
Architecture patrol is periodi- tkinted allows noclogd collects netlogd collects

cally started by cron interactively create events from MA. events from MA.
It collects data and maintain It writes events It writes events
defined in con- object tree. in a standard for- in a stndard for-
figuration file, MA, started via mat suitable for mat suitable for
stores it in log file tkinetd, runs as post processing. post processing.
and computes a separate process MA runs on some MA runs on each
changes from the that could commu- hosts, pulls data monitored hosts
previous run. nicate with tkinted. from cluster and and pushes data
’Rcps results to the sends it to noclogd. to netlogd.
server where html netconsle displays nlv allows
file is generated. information from realtime viewing

the events log. of the events log.
Scalability Not scalable for Not scalable for Scalable Scalable

big clusters. multiple users.
Customization One level of Multiple levels No notion of Possible to

hierarchy. of hierarchy. hierarchy, group the
No overlapping Clusters could clusters,etc. events by some
clusters. overlap. Some events criteria.
User could not Monitoring tree purging is No customiza-
filter reported could be con- possible. tion is provded
events. figure via GUI. for MA.

Events could be
flitered.

GUI/UI/ GUI/UI do not GUI provides a UI and “GUI” GUI allows log
Web Interface exist;WEB inter- framework for (curses) allow file visualiza-

face has limited an extensible to monitor events tion but is
customization monitoring; UI log;Web display unsuitable for
option. exists as well. is primitive. data center needs.

API no yes(tcl api) yes(perl api) yes(c, c++,java,
fortran, python)



4 Conclusions

Distributed System monitoring is well recognized as a challenging task. Many commercial as well
as open source products try to solve it in many different ways. None of evaluated products fully
satisfies our requirements:
� off-shelf functionality (patrol, netlogger)
� scalability (patrol, scotty/tkinter)
� level of customization (nocol,netlogger)
� ability to create hierarchy of monitoring objects (patrol,nocol)
� suitability for the needs of data center personnel (all)

Each product provides some valuable ideas and useful tools:
� existence of logging daemon (nocol, netlogger)
� ULM (Universal Logger Message) as standard logging format (netlogger)
� implementaion of escalating alarms (nocol)
� nlv (netlogger graphical tool) as a events log viewer
� interactive creation of cluster hierarchy (scotty/tkinter)

Based on the evaluation described in this paper we came to the conclusion that acustom DMS
should be built at Fermilab in order to:
� meet our own requirements
� have a flexible and maintainable system
� be able to extend in the future as need arises

We have all prerequisites to successfully accomplish this goal due to our in depth understanding
of the requirements and level of expertise in technology and tools. The experience gained from
analysis of existing systems, and possibility to use some of freeware tools will greatly facilitate
our efforts.

References

1 M. Jander, “Framework Fraud?”, Data Communications,9:33-42, September 21, 1999.
2 http://www-d0en.fnal.gov:/patrol

3 http://www.ibr.cs.tu-bs.de/projects/scotty

4 http://www.netplex-tech.com/software/nocol/

5 http://www-didc.lbl.gov/NetLogger


