Monitoring and Management of Large Distributed Computing Systems at FERMILAB

E. Berman, L.L. Carpenter, J. Fromm, K. Genser, L. Giaccheti, T. Jones, T. Levshina, I. Mandrichencko, S. Naymola, D. Petravick, R. Thies, R. Thompson

Fermi National Accelarator Labortory, Batavia,Illinois, USA

Abstract

The computing needs for future projects at Fermilab will include thousands of computers. This will add to the complexities of operating and managing of a large computing facility. The need for a Distributed Management System (DMS), that is able to efficiently run Fermilab's computing systems, has been recognized and investigations of these types of systems have begun. The comprehensive set of requirements has been defined. Several available products have been evaluated based on the proposed requirements. The proposal to develop proprietary DMS is now under consideration because none of the evaluated products fully satisfied the requirements.

Keywords: distributed management system, network, SNMP, alarm

1 Introduction

The rapid increase in number of computers for Fixed Target experiments and changes for Run II computing add to the complexities of operating and managing of a large computing facility at Fermilab. The Next Generation Operations working group (NGOP) was gathering the requirements for the distributed management system for quite some time. We were looking for pro-active tools that provide self-management of different operatin systems (OS) and mission-critical applications. This paper provides the evaluation and comparison of a few available management systems.

2 Requirements

2.1 Key definitions

We define here basic terminology that will be used throughout the paper:

- Monitoring Object is one of the following:
 - Host computer identified by its full domain name
 - Cluster collection of Hosts
 - Component atomic element that has a well defined behavior
 - System collection of Components
- Object Tree hierarchy of Monitoring Objects
- Condition predefined state of Monitoring Object
- Event- description of detected condition that could include Host, Cluster, System, Severity, date etc.
- Action activity initiated by DMS depending on the event, configuration, current day/time etc. in order to somehow correct the problem.
- Alarm- asynchronous indicator generated by DMS upon event reception based on alarm configuration.

• Monitoring Agent (MA) - daemon process that is running on a host and able to generate event based on condition and perform predefined actions.

2.2 Essential features

The following DMS features have been defined as essential by NGOP. The system should

- be based on industry standards (e.g. SNMP) and provide self-management of different OSs(such as Irix, Aix, HP, Linux, SunOs, and NT) and mission-critical applications.
- be able to detect hardware, network, system and application problems.
- supply basic information such as system daemons status (e.g inetd, syslogd), CPU utilization/load, number of processes and users, runaway processes, network traffic, size of critical file systems, system log errors/warnings (e.g. automount failures), security breaches.
- be scalable up to 1000s of hosts, handle multiple users (e.g. data center personnel, system administrators)
- be secure and support different user authorization levels
- provide the hook for user defined monitoring tools
- generate alarm based on severity of the event
- perform "healing" actions
- provide monitoring via Web browser as well as via GUI or command line interface.
- be able to dynamically configure monitoring systems, alarm severity, notification methods
- provide hierarchical view of the entire monitoring system
- restore it configuration across reboots.
- provide qualitative descriptor of "special" node state such as known bad, off-line, etc...

2.3 Important and desirable features

NGOP outlined a few import and desirable features such as DMS ability to handle overlapping clusters, provide means to generate reports and statistics based on selected criteria, supply contextual on-screen help, implement step-by-step notification regarding performed actions.

3 Evaluated Products

3.1 Why not commercial products?

Based on NGOP analysis of existing commercial software, we came to conclusion that most of the commercial management products would provide limited off-shelf functionality. The substantial efforts and human resources would be required during the installation and customization of the software. In addition the purchase of third-party products is often necessary in order to gain better scalability via Web integration and more off-shelf functionality [1]. The high initial and support cost of the commercial software was considered as well. Those were the reasons why we decided to focus our efforts on evaluation of free DMS products.

3.2 Freeware Products

We have evaluated several freeware products such as patrol¹ [2], scotty/tkinter² [3], nocol³ [4] and netlogger⁴ [5]. The evaluation and comparison of these products are listed in the table below:

¹developed at SLAC/DESY

²developed at Technical University of Braunschweig /Network Management Group

³developed at Netplex Tecnologies Inc

⁴developed at Lawerence Berkeley NationalLab/Future Technologies Group

Products	Patrol	Scotty	Nocol	Netlogger
Ported OSs	Irix, HPUX	SunOs, Ultrix,	SunOs, Solaris,	SunOs, Linux,
	AIX, SunOS,	Irix, Aix,HPUX	OSF, neXt,	Irix
	OSF, Linux	Solaris, Linux,	Linux, Ultrix	
Language/	Perl, Java	Tcl,Tk, C	C, Perl, curses	C, C++, Java,
Products	Script			Perl, Tk, Tcl,flex,
Dependency				bison, pthread
Off-Shelf	Process,Host,	SNMP,ICMP,	SNMP,ICMP,DNS,	SNMP,ICMP,
Functionality	File System	DNS,RPC,NIS,	DNS, RPC, TCP ports	Netsat,Vmstat,
	Info	NTP,UDP	Ethernet load,	Iostat
Off-shelf	Writes messages	Writes messages	Invokes predefined	Can not per-
Functionality	to syslog, sends	to syslog, periodi-	job upon event	form action.
(Action)	mail, page, kills,	cally invokes	reception.	
	restarts process	predefined jobs.		
Architecture	patrol is periodi-	tkinted allows	noclogd collects	netlogd collects
	cally started by cron	interactively create	events from MA.	events from MA.
	It collects data	and maintain	It writes events	It writes events
	defined in con-	object tree.	in a standard for-	in a stndard for-
	figuration file,	MA, started via	mat suitable for	mat suitable for
	stores it in log file	tkinetd, runs as	post processing.	post processing.
	and computes	a separate process	MA runs on some	MA runs on each
	changes from the	that could commu-	hosts, pulls data	monitored hosts
	previous run.	nicate with tkinted.	from cluster and	and pushes data
	'Rcps results to the		sends it to noclogd.	to netlogd.
	server where html		netconsle displays	nlv allows
	file is generated.		information from	realtime viewing
			the events log.	of the events log.
Scalability	Not scalable for	Not scalable for	Scalable	Scalable
	big clusters.	multiple users.		
Customization	One level of	Multiple levels	No notion of	Possible to
	hierarchy.	of hierarchy.	hierarchy,	group the
	No overlapping	Clusters could	clusters,etc.	events by some
	clusters.	overlap.	Some events	criteria.
	User could not	Monitoring tree	purging is	No customiza-
	filter reported	could be con-	possible.	tion is provded
	events.	figure via GUI.		tor MA.
		Events could be		
	CURAN 1	flitered.		
GUI/UI/	GUI/UI do not	GUI provides a	UI and "GUI"	GUI allows log
Web Interface	exist;WEB inter-	tramework for	(curses) allow	file visualiza-
	tace has limited	an extensible	to monitor events	tion but is
	customization	monitoring; UI	log; Web display	unsuitable for
ADI	option.	exists as well.	is primitive.	data center needs.
API	no	yes(tcl ap1)	yes(perl ap1)	yes(c, c++, java,
				tortran, python)

Table I: Products Evaluation and Comparison

4 Conclusions

Distributed System monitoring is well recognized as a challenging task. Many commercial as well as open source products try to solve it in many different ways. None of evaluated products fully satisfies our requirements:

- off-shelf functionality (patrol, netlogger)
- scalability (patrol, scotty/tkinter)
- level of customization (nocol,netlogger)
- ability to create hierarchy of monitoring objects (patrol,nocol)
- suitability for the needs of data center personnel (all)

Each product provides some valuable ideas and useful tools:

- existence of logging daemon (nocol, netlogger)
- ULM (Universal Logger Message) as standard logging format (netlogger)
- implementaion of escalating alarms (nocol)
- nlv (netlogger graphical tool) as a events log viewer
- interactive creation of cluster hierarchy (scotty/tkinter)

Based on the evaluation described in this paper we came to the conclusion that acustom DMS should be built at Fermilab in order to:

- meet our own requirements
- have a flexible and maintainable system
- be able to extend in the future as need arises

We have all prerequisites to successfully accomplish this goal due to our in depth understanding of the requirements and level of expertise in technology and tools. The experience gained from analysis of existing systems, and possibility to use some of freeware tools will greatly facilitate our efforts.

References

- 1 M. Jander, "Framework Fraud?", Data Communications,9:33-42, September 21, 1999.
- 2 http://www-d0en.fnal.gov:/patrol
- 3 http://www.ibr.cs.tu-bs.de/projects/scotty
- 4 http://www.netplex-tech.com/software/nocol/
- 5 http://www-didc.lbl.gov/NetLogger