
Visualization Tools for Monitoring and Evaluation of Distributed
Computing Systems
Developed for the BaBar Prompt Reconstruction System

R.F. Cowan1? , G. Grosdidier2

for the BaBar Prompt Reconstruction and Computing Groups

1 Laboratory for Nuclear Science, Masschusetts Institute of Technology, Cambridge, MA 02139 USA
2 LAL-IN2P3-CNRS, Université Paris-Sud, Orsay, France (currently at SLAC)

Abstract

We describe several tools used to evaluate the operation of distributed computing systems.
Included are tools developed for visual presentation of data accumulated from several sources.
Examples are taken from the BaBar Prompt Reconstruction system, which consists of more
than 200 individual nodes and transmits several hundred gigabytes/day to an object-oriented
data store. Each node records its actions in a log file, and along with other performance logs,
these supply the data required. One tool, a log analyzer and browser based on Perl/PerlTk,
was developed to spot failures as recorded in the log files. It was built primarily to narrow
the search for synchronous events (”hickups”) across the nodes to a few useful lines per node
instead of a full log file of several megabytes each. It is also used to navigate through these
log files and other failure reports, and as a presenter for the monitoring of the whole system.
Another presents each node’s activities in a parallel manner to help detect situations where
resource demands by one node affect the activities on others. These tools have contributed to
the understanding of several problems encountered during this system’s development.

Keywords: BaBar, distributed computing, Objectivity, operational monitoring, performance eval-
uation, Perl/Tk, rperf, snoop, tcptrace, visualization, xmgrace

1 Introduction

The BaBar Prompt Reconstruction System, which is described in detail elsewhere[1, 2], utilizes up
to several hundred individual computing nodes to perform event reconstruction of the datastream
from the BaBar detector at the Stanford Linear Accelerator Center. For the purposes of this note,
the relevant portions of this system are a single-node event distributor, called the logging manager,
a multiple-node event processing farm, and a few database servers that provide access to conditions
data and receive the output data from the processing nodes. The output consists of C++ objects
transmitted and stored using an object-oriented database product, Objectivity/DB[3, 4]. Each node
is a Sun Ultra 5 running Solaris 2.6. Data is processed units of BaBar “runs”; a run is the data
taken during one PEP-II fill, typically 200–300k events.

A major goal is to track the performance of the farm as a whole and identify any partic-
ular bottlenecks that limit performance. These may indicate competition between the nodes for
resources from the database servers or logging manager.

2 How monitoring is done

Monitoring information is obtained from four sources: (1) individual farm node log files (one
per node per run), (2) system performance (rperf) data gathered continuously by cron jobs;

? Research supported by the U.S. Department of Energy under Cooperative Agreement #DE-FC02-94ER40818.

(3) database activity data (oolockmon), also gathered continuously via cron; and (4) network
activity dump files (snoop, tcptrace) that are gathered during special tests.

2.1 Information sources

Farm node log files are plain text files generated by the main processing application and may be as
large as several megabytes each. They contain timestamps created every time the node progresses
from one processing state to the next.

Object database usage is monitored by tracking lock activity. Multiple access to the object
data is controlled by a locking mechanism. The entire database, called a federation, is partitioned
into a number of individual databases, which are further partitioned into containers. Locks occur
at the container level and are of two kinds: “read” and “update”. Database activity can also
be monitored by tracking the number of userids, unix process ids, and internal transaction ids
accessing the database as a function of time.

A standard unix utility, rperf, is used to gather system statistics from the nodes and servers.
rperf monitors a number of quantities; we look mostly at cpu usage and network packet transfer
rates. A cron job manages scripts that record periodic usage snapshots.

Network use is monitored on-demand by logging network activity with the packet capture
program snoop[6] and analyzing the logs with tcptrace[7]. tcptrace presents its information
as xplot[8] files. We have written an xplot to xmgrace converter to provide more flexible data
presentation.

2.2 Monitoring tools

For each type of performance data we have developed a tool to present the data in visual form. We
chose xmgrace[5] to produce the graphical output for all tools except the OprLogScan tool, which
has its own GUI. xmgrace can be used interactively via its own GUI, where plots can be scaled,
overlaid, transformed, annotated, etc., and can be run in batch mode using plain text control files.
In either case hardcopy output can be produced for PostScript and other common formats.

2.2.1 The OprLogScan tool

As the farm processes each run, it is crucial to be able to analyze activities simultaneously across
the hundreds of log files to spot failures which can affect the processing over all the nodes. In
particular, it can be critical to spot synchronous glitches across multiple nodes.

The OprLogScan script was developed mainly in this spirit, and obviously Perl was very
well suited for this task, due to its ability to handle character strings. To display the results of the
scan process, a GUI was built in Perl/Tk, and it is logically and technically totally embedded within
the Perl analyzer: it allows to easily get multiple windows to compare simultaneous events, to dis-
play summaries at one time, and to use the tag facilities offered through Perl/Tk to navigate across
all the windows (Figure 1). [This and additional figures may be found at http://www.slac.
stanford.edu/BFROOT/www/Computing/Online/PromptReco/CHEP2000/paper186.]

The overall application, while digging into several hundred files of several megabytes each,
remains quite fast and effective, and allows monitoring of the processing in real time, with a
summary window showing in reverse video the differences with the previous snapshot.

We have been using Perl 5.00503 together with Perl/Tk 800.014 for this work, with very
few failures.

Figure 1: OprLogScan screen snapshot showing summary window, single log file window, and time slice

window.

2.2.2 Event processing time monitoring

The processing steps of each event’s data are the same across events and across nodes, and can
be treated as a state machine with sixteen possible states. This small number of states permits a
simple graphical depiction of each node’s state as a function of time. We have chosen to present
this as a series of barchart strips, one per node. A C-shell script scans the log files, extracts the
state transition times, and stores them in a file. A second tool reads this and creates a graphics file
for xmgrace. This file is processed and a barchart is produced (Figure 2). Up to twenty nodes can
be readably plotted on a single page. These can be time-sliced and zoomed to provide additional
detail.

A third tool reads the summary file and produces histograms (Figure 3) of time spent in
various states and combinations thereof for either all events or for events of certain types (e.g.,
bhabhas, multihadrons, etc.).

2.2.3 Database activity monitoring

We developed tools to monitor database activity (Figure 4). As well as assisting with sorting out
bottlenecks, these plots give an excellent measure of overall operation by showing the explicit
downtime between run cycles.

2.2.4 System performance monitoring

System performance data is monitored via rperf, a common Unix system statistics gathering tool.
A cron job controls scripts that log system performance data. A plotting tool extracts selected data

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Time (minutes) (0=Thu Dec 9 05:35:38 1999)

Run−9953−1−99−12−09.05:33:06
Thu Dec 9 05:35:38 1999, page 1 of 5

bronco011
bronco012
bronco013
bronco014
bronco015
bronco016
bronco017
bronco019
bronco020
bronco021
bronco022
bronco023
bronco024
bronco025
bronco026
bronco027
bronco028
bronco029
bronco030
bronco031

First Fwk Start

This Fwk Start

Initialize Objy

TRANS: start read

TRANS: commit

begin Job

1st new trans strt

begin Run

beginCB

trans committed

new trans started

OFTM event

doEvent started

doEvent completed

about to commit

endCB

Mon Dec 13 09:11:39 1999

Figure 2: Barchart strip display of state transitions for 20 nodes. The vertical key on the right names the

state associated with each color. Individual node names are on the left axis. Lengthy stretches of red indicate

unexpectedly long times to send output data to the object database.

0 20 40 60 80 100
event time (seconds)

0

158

316

474

632

790

co
un

ts

isRecoMultiHadron: 10053 entries, min 2.000000 < 15.013727 ± 29.604274 < max 570.000000

Run−9953−1−99−12−09.05:33:06
Event type timing histogram for events passing TagInspector "isRecoMultiHadron"

R. Cowan
Laboratory for Nuclear Science
M.I.T.Sun Jan 9 16:11:42 2000

Figure 3: Event processing time histogram for events classified as multihadrons. This data is extracted from

the same event timing summary file as used for the barchart strips.

99−12−27 06:00:00 99−12−27 12:00:00 99−12−27 18:00:00 99−12−28 00:00:00

Date/time

0

1000

2000

3000

4000

5000

6000

#l
oc

ks

#total locks
#update locks

0

20

40

60

80

100

120

140

#i
ds

#uid@host
#pid@host
#transaction ids

Opr Production Federation Usage for 27 Dec 1999 00:00−24:00
/nfs/objyserv1/objy/databases/Production/physics/V1/production/opr/BaBar.BOOT

R. Cowan
Laboratory for Nuclear Science
M.I.T.Sun Jan 9 16:49:49 2000

Figure 4: Database activity plot, showing locks (bottom) and number of processes, users, and transactions

(top) accessing the database. Each activity period corresponds to one run’s processing cycle.

0.0 20.0 40.0 60.0
time (minutes) (0=Tue Nov 09 13:00:00 1999)

0.0

20.0

40.0

60.0

80.0

100.0

C
pu

 U
sa

ge
 (

%
)

(U
sa

ge
 =

 S
ys

te
m

 +
 U

se
r)

OPR Farm Test
From Tue Nov 09 13:00:00 1999 to Tue Nov 09 14:00:00 1999

bronco006
bronco007
datamove4
datamove5
datamove8

Figure 5: CPU usage for certain nodes during a test. Data is taken from rperf logs. The tool can plot any

rperf-reported quantity.

from the log files for periods of interest and creates xmgrace batch files (Figure 5).

2.2.5 Network activity monitoring

Monitoring network activity has proven useful on a few occasions to debug problems in communi-
cation between the farm nodes and the servers. We used existing tools to capture network activity
(e.g., snoop[6]) and to analyze the captured data (e.g., tcptrace[7]). However, tcptrace uses
a plotting tool called xplot[8], and in keeping with our use of xmgrace, we wrote an xplot-to-
xmgrace converter, at least for the xplot commands that tcptrace uses, since xmgrace is more
flexible.

3 Conclusions

The development of these tools was crucial to the timely understanding of the BaBar Prompt
Reconstruction system. Each was developed to address a particular set of problems and provided
information that was critical in overcoming difficulties encountered in development. They were
very successful in allowing the project to move forward. They also provide an archival history of
the operational characteristics of the system.

These tools are easily adaptable to monitor other quantities; all that is needed is to replace
the front-end data extraction portions as appropriate. They have also been successfully used to
study the behavior of other BaBar processing environments.

These tools are still undergoing development as software changes continue to occur. New
diagnostic capabilities are added every month or two to look at new problems and behavior as the
system grows.

References

1 T. Glanzman, J. Bartelt, T.J. Pavel, S. Dasu, The BaBar Prompt Reconstruction System,
SLAC-PUB-7977, Oct 1998. 8pp. Presented at International Conference on Computing in
High-Energy Physics (CHEP 98), Chicago, IL, 31 Aug–4 Sep 1998.

2 T. Glanzman et al., The BABAR Prompt Reconstruction System, or Getting the Results out
Fast: an evaluation of nine months experience operating a near real-time bulk data produc-
tion system. Presented at International Conference on Computing in High-Energy Physics
(CHEP 2000), Abstract #288, Padova, Italy, 7–11 Feb 2000.

3 D. Quarrie et al., Operational Experience with the BaBar Database. Presented at Inter-
national Conference on Computing in High-Energy Physics (CHEP 2000), Abstract #103,
Padova, Italy, 7–11 Feb 2000.

4 J. Becla, Improving Performance of Object Oriented Databases, BaBar Case Studies. Pre-
sented at International Conference on Computing in High-Energy Physics (CHEP 2000),
Abstract #110, Padova, Italy, 7–11 Feb 2000.

5 xmgrace is a plotting utility for X windows and has been ported to VMS, OS/2, and
Win9*/NT. Complete information on xmgrace and the package itself are available at
http://plasma-gate.weizmann.ac.il/Grace.

6 Distributed by Sun Microsystems.
7 tcptrace is a TCP dump file analysis tool written by Shawn Ostermann at Ohio University.

More information is available at http://jarok.cs.ohiou.edu/software/tcptrace/
tcptrace.html.

8 The xplot program, written by Tim Shepard, can be found at ftp://mercury.lcs.mit.
edu/pub/shep.

