Visualization Tools for Monitoring and Evaluation of Distributed
Computing Systems
Developed for the BaBar Prompt Reconstruction System

R.F. Cowan'*, G. Grosdidier?
for the BaBar Prompt Reconstruction and Computing Groups

I Laboratory for Nuclear Science, Masschusetts Institute of Technology, Cambridge, MA 02139 USA
2 LAL-IN2P3-CNRS, Université Paris-Sud, Orsay, France (currently at SLAC)

Abstract

We describe several tools used to evaluate the operation of distributed computing systems.
Included are tools developed for visual presentation of data accumulated from several sources.
Examples are taken from the BaBar Prompt Reconstruction system, which consists of more
than 200 individual nodes and transmits several hundred gigabytes/day to an object-oriented
data store. Each node records its actions in a log file, and along with other performance logs,
these supply the data required. One tool, a log analyzer and browser based on Perl/PerlTk,
was developed to spot failures as recorded in the log files. It was built primarily to narrow
the search for synchronous events (hickups”) across the nodes to a few useful lines per node
instead of a full log file of several megabytes each. It is also used to navigate through these
log files and other failure reports, and as a presenter for the monitoring of the whole system.
Another presents each node’s activities in a parallel manner to help detect situations where
resource demands by one node affect the activities on others. These tools have contributed to
the understanding of several problems encountered during this system’s development.

Keywords: BaBar, distributed computing, Objectivity, operational monitoring, performance eval-
uation, Perl/TKk, rperf, snoop, tcptrace, visualization, xmgrace

1 Introduction

The BaBar Prompt Reconstruction System, which is described in detail elsewhere[1, 2], utilizes up
to several hundred individual computing nodes to perform event reconstruction of the datastream
from the BaBar detector at the Stanford Linear Accelerator Center. For the purposes of this note,
the relevant portions of this system are a single-node event distributor, called the logging manager,
amultiple-node event processing farm, and a few database servers that provide access to conditions
data and receive the output data from the processing nodes. The output consists of C++ objects
transmitted and stored using an object-oriented database product, Objectivity/DB[3, 4]. Each node
is a Sun Ultra 5 running Solaris 2.6. Data is processed units of BaBar “runs”; a run is the data
taken during one PEP-II fill, typically 200-300k events.

A major goal is to track the performance of the farm as a whole and identify any partic-
ular bottlenecks that limit performance. These may indicate competition between the nodes for
resources from the database servers or logging manager.

2 How monitoringisdone

Monitoring information is obtained from four sources: (1) individual farm node log files (one
per node per run), (2) system performance (rperf) data gathered continuously by cron jobs;

* Research supported by the U.S. Department of Energy under Cooperative Agreement #DE-FC02-94ER40818.

(3) database activity data (oolockmon), also gathered continuously via cron; and (4) network
activity dump files (snoop, tcptrace) that are gathered during special tests.

2.1 Information sources

Farm node log files are plain text files generated by the main processing application and may be as
large as several megabytes each. They contain timestamps created every time the node progresses
from one processing state to the next.

Object database usage is monitored by tracking lock activity. Multiple access to the object
data is controlled by a locking mechanism. The entire database, called a federation, is partitioned
into a number of individual databases, which are further partitioned into containers. Locks occur
at the container level and are of two kinds: “read” and “update”. Database activity can also
be monitored by tracking the number of userids, unix process ids, and internal transaction ids
accessing the database as a function of time.

A standard unix utility, rper£, is used to gather system statistics from the nodes and servers.
rperf monitors a number of quantities; we look mostly at cpu usage and network packet transfer
rates. A cron job manages scripts that record periodic usage snapshots.

Network use is monitored on-demand by logging network activity with the packet capture
program snoop[6] and analyzing the logs with tcptrace[7]. tcptrace presents its information
as xplot[8] files. We have written an xplot to xmgrace converter to provide more flexible data
presentation.

2.2 Monitoring tools

For each type of performance data we have developed a tool to present the data in visual form. We
chose xmgrace[5] to produce the graphical output for all tools except the OprLogScan tool, which
has its own GUI. xmgrace can be used interactively via its own GUI, where plots can be scaled,
overlaid, transformed, annotated, etc., and can be run in batch mode using plain text control files.
In either case hardcopy output can be produced for PostScript and other common formats.

2.2.1 The OprLogScan tool

As the farm processes each run, it is crucial to be able to analyze activities simultaneously across
the hundreds of log files to spot failures which can affect the processing over all the nodes. In
particular, it can be critical to spot synchronous glitches across multiple nodes.

The OprLogScan script was developed mainly in this spirit, and obviously Perl was very
well suited for this task, due to its ability to handle character strings. To display the results of the
scan process, a GUI was built in Perl/Tk, and it is logically and technically totally embedded within
the Perl analyzer: it allows to easily get multiple windows to compare simultaneous events, to dis-
play summaries at one time, and to use the tag facilities offered through Perl/Tk to navigate across
all the windows (Figure 1). [This and additional figures may be found at http://www.slac.
stanford.edu/BFRO0T/www/Computing/Online/PromptReco/CHEP2000/paper186.]

The overall application, while digging into several hundred files of several megabytes each,
remains quite fast and effective, and allows monitoring of the processing in real time, with a
summary window showing in reverse video the differences with the previous snapshot.

We have been using Perl 5.00503 together with Perl/Tk 800.014 for this work, with very
few failures.

JISIIES]

Summary Panel for Run-9412-1-00-01-08.15:08:44

oy Summary for: [Run-9412-1-00-01-09.15:0844 Filter> [33339

¢

g|| Tells | Tail size | 500

4
[vies”|[ogs ll RefLoop |Tlme 120 | Refresh |Refresh4t|

e Brurkeft slices | Time Wincow: | 152113 Duration: | 00:10:00 OR End of Window: |
|4 [summary Panel for: Run-9412-1-00-01-03.15:00.:44 OprLogFiles/Ri 412-1-00-01-08.15:08:44/-bronco044-26951.Jog ==k
Started on: Sun Jan 9 2000 , ,
. Redo Slices for | Redo Siices for | Redo Slices | Old Siices, Ho
Log files : Starting : Eading Hod: jtoncoO Curvent Selection | Eaiest Crash | for this Node | Recomputing
Earliest Start 15:20.22 broncoDidbroncodld = . i 1381 Level 1 Accepts read
Latest Start 15:20:39 broncol3Shroncol3s 162515 DBSIZE: Incrementing counter for dbid 30741 by 103 (125-22)
Earliest End 16:25:04 bronco0d8 16:25:16 TRANS (poolGtx 1): start (mode-update, id=35)
B N o e el 16.35:16 Attempting to open db: eus_clustEintConfig
Dz Bl e B P 16:25:16 HOACHE (poolGtx_ 1): Db handle from cache {db=evs clustHintGonfig)
lalifele Bt T] 16:25:16 HOACHE (pwlctx 1): Opening the db {mode-update, LockWait=T200
Easlist Pisst Brocs 15:04:34 bronsols 16.25. 16 HOACHE (poelctil). Success
t Procs 16:26:17 broneoll? 16:25:15 0PEN GONE EDunterA 30741" (db=ews_clustHintGonfig, mode=update, lockWait=7200)
Eiriiest |Laet Procs 16.70:14 hroneol2? 18:52.27 OBEN GONT, Succosy
Lateot Last Procs 16:21:29 bronco018 16:25:27 DBSIZE: nerswenting page counter: MSLLIO3-MEU, (curcent dbid=30741)
Total mmber of evts procsssed so far 145410 / 14| |1¢°22 57 TraNs (poolote 1) comait (ide
Okt @ 2 TEEhD per) et 0 cToE 16:25:32 Clustering hint statistics, tor Pavebdce
Mouse Button 1 for begining of snippet A abodtiat oalle £
Mouse Button 3 for end of snippst P

,sucss: [SIEIE

Shift Button 1 for full log fils
Control Button 1 for popup memu

e 07 Pud return status = 0
[ate: 15:31.07 DBSIZE: BabParamandler::updateForceNewCont: does not have to obtaind dbid
bronoo0ll Success EV 1335 FP 15:24:54 LP 16:20:15 | | |16, 55: 39 Clusteq|| [15:31:08 OPEN DB: "evs_g_triggerEvents_ead0078AC" (mode=update, Lock¥ait=7200)

)

broncoll? Success EV 1457 FB 15.24.51 Lp 16.20.40

| [bzonco013 success Ev 1614 ¥ 15:24.45 Lp 16:20:33|[|16 o2 s Fatedt 15:31:05 HoAGHE (nadnCt): Db handle added (dbh-eve g triggerEvents esd0078AD
broncoll4 Success EV 1528 FP 15:24:43 Lp 16:20:14 (| |1 52 33 Thane 1531 00 DBt oo apoce in o 14308581 (45:-1000)
oS Success EY S TP lpi2iadLp 1820l |is:25:33 acempyll 1531 £ to create "noName! =_q_triggerEvents esdDOTEAC
roncollé Success EV FB Lp 16:25:33 HOACHE h h n inif -5n percGr=10

bronco0lT Success EV 1597 FP 15:24:54 LP 16:20:16
bronco0l@ Success EV 1673 FP 18:24.84 Lp 16:21:20 | [16:23:3% HOBCHE | [15:31:14 NEW GONT [30892,50] ereated

Droncodth Swccess By 1696 b 15 74 4 1o 15 o dn| [2EES 30 DEEN G| M cecccecec e e e Eeeeeeecetacer e ceeseececces bramealdd
broncol2l Suscess EV 1520 e 152450 Le 16.21.00|| (18123 PEN

broncal22 Success EV 1668 FP 15.24:30 Lp 16.200:14
D roncads3 Snccess £V 1303 b 1312454 b 16.00.21 ([| [1S:2535 TS ||| BEGIN 523222:2232322222222222222232322222222222322>>) brancalid
Rz Soeen 7 S0 9 GRAAE I 204 i updated; fofs /habar foasni ca/theliprLogFiles Run-0412-1-00-01-00. 16: 00 :44/E-broncalldd-26051. lag
05t Succecs v 1541 30 1.94.23 Lo 16015 |=| nr pages wr Sun Jan O 16:20:30 ST 2000 grodid BEGIN ElfOprApp broncoldd
broncolZT Success Ev 1822 Fp 18.24.48 Lp 16.20.17||4) 0% °f centa Beg Lines 109 broncold4 109:Sun dan_ 9 15:20:30 PST 2000 grodid BESIN E1fOprApp
e oy oo 1o o o i T nel| = End Lines 17680 bronca04d 17689:15:31:38 TRaNS: start update 4d=18
bronco0Z3 Success EV 1501 FP 15:25:01 LP 16:20:15
e e I D A File infl| |sun Jan 9 15:20:30 ST 2000 grodid BEGIN E1fOprApp broncotdd
broncol3l Success EV 1347 FP 15:24:56 LB 16:20:15 SF U7 &V 4T
bronco032 Success EV 1682 FP 15:24:50 LB 16:20:58 SP 0.03 A¥ 0.50 [ERAMEFORK g;fgﬁéi‘gg‘mtmn
pramsies fweas By M I e s e A cLiBimiz /afs/slac/g/ha.har/releaaes/ﬁ 3.1e/bin/Sun0S5-Optinize
broncol35 Success EV 1516 FP 15:24:50 LP 16:20:17 SP 0.03 AV 0.46 lRoading®: I3 information for ELEQ
broncoD36 Success EV 1374 FP 15:25:05 LP 16:20:17 SP 0.02 AV 0.41 S 3‘«’”’3”1‘5 i tldp/ o Nib/1d.s0.1
broncol37 Success EV 1752 FP 15:24:53 Lb 16:20:17 S8 0.03 AV 0.53 v emiiing sepbelie swimesm e S jnklingid oo
broncol38 Success EV 1516 FP 15:25:03 LB 16:20:40 SP 0.03 A¥ 0.45 = T =
bronco033 Success EV 1271 FP 15:24:52 Lp 16:20:17 Se 0.02 &V 0.38 ¥
bronca040 Success EV 1531 FP 15:24:51 LP 16:20:14 5P 0.03 &V 0.46
broncel4l Success EV 1324 FP 15:25.01 LP 16:20:23 SP 0.02 AV 0.40 ey fieg e caclgoio
broncol4Z Success EV 1552 FP 15:25:03 LP 16:20:23 SP 0.03 &V 0.47 Conpleted with Log File analysis
/|broncold3 success EV 1304 Ep 15:25:02 Lp 16:20:21 S 0.02 AV 0.3

_ |renopsrzanework exiting

Scanning ended
= =] T
a Slice bronco044 shown

Figure 1: OprLogScan screen snapshot showing summary window, single log file window, and time slice

window.

2.2.2 Event processing time monitoring

The processing steps of each event’s data are the same across events and across nodes, and can
be treated as a state machine with sixteen possible states. This small number of states permits a
simple graphical depiction of each node’s state as a function of time. We have chosen to present
this as a series of barchart strips, one per node. A C-shell script scans the log files, extracts the
state transition times, and stores them in a file. A second tool reads this and creates a graphics file
for xmgrace. This file is processed and a barchart is produced (Figure 2). Up to twenty nodes can
be readably plotted on a single page. These can be time-sliced and zoomed to provide additional
detail.

A third tool reads the summary file and produces histograms (Figure 3) of time spent in
various states and combinations thereof for either all events or for events of certain types (e.g.,

bhabhas, multihadrons, etc.).
2.2.3 Database activity monitoring

We developed tools to monitor database activity (Figure 4). As well as assisting with sorting out
bottlenecks, these plots give an excellent measure of overall operation by showing the explicit

downtime between run cycles.
2.2.4 System performance monitoring

System performance data is monitored via rperf, acommon Unix system statistics gathering tool.
A cron job controls scripts that log system performance data. A plotting tool extracts selected data

Run-9953-1-99-12-09.05:33:06
Thu Dec 9 05:35:38 1999, page 1 of 5

First Fwk Start

This Fwk Start

bronco031 Initialize Objy
bronco030
bronco029 TRANS: start read
bronco028)
bronco027 TRANS: commit
bronco026 begin Job
bronco025
bronco024 1st new trans strt
bronco023 begin Run
bronco022
bronco021 beginCB
bronco020
bronco019 trans committed
bronco017 new trans started
bronco016
bronco015 OFTM event
bronco014
bronco013 doEvent started
bronco012
doEvent completed

bronco01.1. 77 N NN I N U [

Il ‘ Il ‘ Il ‘ Il ‘ Il ‘ Il ‘ Il ‘ Il ‘ Il ‘ Il ‘ Il ‘ Il ‘ Il Il abOUt to COmmit

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
X . endCB
Time (minutes) (0=Thu Dec 9 05:35:38 1999)

Mon Dec 13 09:11:39 1999

Figure 2: Barchart strip display of state transitions for 20 nodes. The vertical key on the right names the
state associated with each color. Individual node names are on the left axis. Lengthy stretches of red indicate

unexpectedly long times to send output data to the object database.

Run-9953-1-99-12-09.05:33:06

Event typeti m? ng histogram for events passing Ta‘gl nspect

or "isRecoMultiHadron"

7%

i J —— isRecoMultiHadron: 10053 entries, min 2.000000 < 15.013727 + 29.604274 < max 570.000000‘

60

event time (seconds)
Sun Jan 9 16:11:42 2000

80 100

R. Cowan :
Laboratory for Nuclear Science
M.I.T.

Figure 3: Event processing time histogram for events classified as multihadrons. This data is extracted from

the same event timing summary file as used for the barchart strips.

Opr Production Federation Usage for 27 Dec 1999 00:00-24:00
/nfs/objyservl/objy‘/databaseﬂProduction{physics/V]JproductioP/opr/BaBar.BOOT ‘
+— +— ——t—t—t =

140 T T } T T ‘ T T T T T ‘
— #uid@host
120 —— #id@hos
100 L —— #transaction ids
g g P e
% 50 T
40 —
20 -+
T A T
6000 —— #total locks
—— #update locks
5000
4000
3000
2000
1000
Il Il Il ‘ Il J! ‘ Il Il Il ‘ Il Il Il | Il
O T U T T ‘ U T T U T ‘ T T U T U ‘ T T T T T

99-12-2706:00:00 99-12-27 12:00:.00 99-12-2718:00:00 99-12-28 00:00:00
Date/time R Cowan !
Sun Jan 9 16:49:49 2000 g ory for Nutear Sdtence
Figure 4: Database activity plot, showing locks (bottom) and number of processes, users, and transactions

(top) accessing the database. Each activity period corresponds to one run’s processing cycle.

OPR Farm Test
From Tue Nov 09 13:00:00 1999 to Tue Nov 09 14:00:00 1999

—— bronco006
1000 —— bronco007
—— datamove4
s —— datamove5
2 —— datamove8
7 800
£
L
w
>
%)
1
o 600
j=2)
@
1%
2
S
o 400
D
It
1%2)
o]
=1
a \
© 200 f
Il
A
|
slid

40.0
time (minutes) (0=Tue Nov 09 13:00:00 1999)

60.0

Figure 5: CPU usage for certain nodes during a test. Data is taken from rperf logs. The tool can plot any
rperf-reported quantity.

from the log files for periods of interest and creates xmgrace batch files (Figure 5).

2.2.5 Network activity monitoring

Monitoring network activity has proven useful on afew occasions to debug problemsin communi-
cation between the farm nodes and the servers. We used existing tools to capture network activity
(e.g., snoop[6]) and to analyze the captured data (e.g., tcptrace[7]). However, tcptrace uses
aplotting tool called xplot[8], and in keeping with our use of xmgrace, we wrote an xplot-to-
xmgrace converter, at least for the xplot commands that tcptrace uses, since xmgrace ismore
flexible.

3 Conclusions

The development of these tools was crucia to the timely understanding of the BaBar Prompt
Reconstruction system. Each was developed to address a particular set of problems and provided
information that was critical in overcoming difficulties encountered in development. They were
very successful in allowing the project to move forward. They also provide an archival history of
the operational characteristics of the system.

These tools are easily adaptable to monitor other quantities; all that is needed is to replace
the front-end data extraction portions as appropriate. They have also been successfully used to
study the behavior of other BaBar processing environments.

These tools are still undergoing development as software changes continue to occur. New
diagnostic capabilities are added every month or two to look at new problems and behavior as the
system grows.

References

1 T. Glanzman, J. Bartelt, T.J. Pavel, S. Dasu, The BaBar Prompt Reconstruction System,
SLAC-PUB-7977, Oct 1998. 8pp. Presented at International Conference on Computing in
High-Energy Physics (CHEP 98), Chicago, IL, 31 Aug-4 Sep 1998.

2 T.Glanzman et al., The BABAR Prompt Reconstruction System, or Getting the Results out
Fast: an evaluation of nine months experience operating a near real-time bulk data produc-
tion system. Presented at International Conference on Computing in High-Energy Physics
(CHEP 2000), Abstract #288, Padova, Italy, 7-11 Feb 2000.

3 D. Quarrie et al., Operational Experience with the BaBar Database. Presented at Inter-
national Conference on Computing in High-Energy Physics (CHEP 2000), Abstract #103,
Padova, Italy, 7-11 Feb 2000.

4 J Becla, Improving Performance of Object Oriented Databases, BaBar Case Sudies. Pre-
sented at International Conference on Computing in High-Energy Physics (CHEP 2000),
Abstract #110, Padova, Italy, 7-11 Feb 2000.

5 xmgrace is a plotting utility for X windows and has been ported to VMS, 0OS/2, and

Win9*/NT. Complete information on xmgrace and the package itself are available at

http://plasma-gate.weizmann.ac.il/Grace.

Distributed by Sun Microsystems.

7 tcptraceisaTCPdump fileanalysistool written by Shawn Ostermann at Ohio University.
More information is available at http://jarok.cs.ohiou.edu/software/tcptrace/
tcptrace.html.

8 Thexplot program, written by Tim Shepard, can befound at ftp://mercury.lcs.mit.
edu/pub/shep.

»

