
CORBA/RMI Issues in the Java implementation of the
Nile distributed operating system

F. Handfield1, D. Mimnagh1, M. Ogg1,2, L. Zhou3

1 University of Texas, Austin Texas 78712, USA
2 now at Bell Labs, Lucent Technologies Inc., Murray Hill New Jersey 07974, USA
3 University of Florida, Gainesville Florida 32611, USA

Abstract

Nile is a high performance, heterogeneous, fault-tolerant, distributed operating system
that gives users transparent access to distributed computer resources for processing high en-
ergy physics data. Initially, we implemented the Nile Control System using CORBA. As this
implementation was written in Java, with little effort we later re-implemented it using RMI
for the distributed object transport. Our experience using Nile in the CLEO experiment has
shed new light on service, performance, scalability, and programming issues of these two
technologies. We describe the ways we have met challenges from CORBA and RMI and their
effects on implementation, performance of resource management and fault-tolerance.

Keywords: distributed computing, Java, CORBA, RMI

1 Description of Nile

Nile has been described elsewhere [1, 2, 3] but for completeness we describe its salient features
here. Nile is a distributed operating system that gives users transparent access to scalable dis-
tributed computing resources that appear to the user to be a single “virtual computer”. Nile is
fault-tolerant, meaning that the onus is on the system and not the user to compensate for processor
failures or network partitions. The motivations for Nile’s design were the computing and storage
requirements of the CLEO experiment at the Cornell Electron Storage Ring (CESR), but we have
taken great care to ensure that Nile can be used easily not only by other elementary particle physics
experiments, but also by other related applications with similar parallelizability.

Planner

Job DB Resource
DB

Data
Location
Manager

Site
Manager

Job Manager
Factory

JM 1 JM 2

Machine 1 Machine 2

User

Job

Sub Job

3700100-001

Figure 1: Nile Control System Architecture



The key feature of Nile is that a user’s computing Job is broken down into many Subjobs,
each of which executes independently and in parallel on as many different processors as are avail-
able. After all Subjobs have completed, a Collection task assembles the results so that the user
sees the results of only one Job. The architecture of the Nile Control System (NCS) is illustrated
in Fig. 1.

The user submits a Job to the Site Manager via a Java Graphical User Interface (GUI).
The Site Manager creates a Job Manager instance using any available Job Manager Factory. The
Job Manager manages the Job until its completion, using the Planner to obtain CPU and data
resources for the job. In turn, the Planner receives information from the Resource Database and
Data Location Manager. When resources are available the Subjobs are started on the assigned
individual Subjob Processors (i.e., the physical processors). Each Subjob is small enough that
the loss of that Subjob and reassignment to another processor in the event of failure does not
unduly waste resources. Each Subjob is a leaf in a tree-like data structure that represents the
parallelization of the Job. Subjob failure is managed automatically. A failed Subjob becomes a
node and is rescheduled as one or more new Subjobs.

The first distributed object implementation of Nile1 was written in C++ using CORBA [2,
3]. The target ORB, Electra [6], used Isis [5] as its transport. When Isis was no longer available,
we decided to abandon object replication, re-implement Nile in Java, but still use CORBA and
keep the original IDL object interfaces. At the time, it seemed quite likely that some of Nile’s
objects would still be implemented in C++, so CORBA appeared to be an appropriate choice. As
it turned out, Nile was eventually implemented entirely in Java, so there was no overriding reason
to stay with CORBA, except that the IDL object interfaces already existed.

2 Distributed Object Architecture

There are several reasons why Nile (and other similar systems relying on commodity hardware)
should use a distributed architecture. Nile is necessarily a distributed system – that is how the
parallelization of Subjob Processors is achieved. More pertinent is why the Nile Control System
itself should be distributed. This is done for reasons of scalability (arbitrarily many Job Manager
Factory objects can be used where each Job Manager instance controls a single job); resilience,
by allowing failed components to be restarted as needed, whereas a monolithic architecture would
more likely lead to catastrophic failure; separation of function, such as placing databases sepa-
rately from other components; availability through replication (although this feature was largely
abandoned, we wanted to keep the replication option available). Distribution also allows us to add
more stringent fault tolerance properties by exploiting the many processors to replicate crucial
NCS tasks. Most distributed systems are based on some form of middleware, which is a layer of
software between the application and the network transport that shields the former from the lat-
ter, in particular transparently handling such tedious business as marshalling and unmarshalling,
byte swapping, error handling, and raising exceptions. The principal standards-based, or de facto
standard middleware systems are CORBA [7], RMI [8], and DCOM [9]. Since Nile had already
been implemented in Java, the latter was not considered further. While middleware systems han-
dle most of the tedious aspects of distributed systems, they cannot and should not disguise the fact
that remote method invocations introduce additional failure modes, requiring different techniques
for error handling and failure detection to achieve robust, reliable operation.

1There was an earlier version [4] that used a proprietary replicated transport [5] with C++ wrappers.



3 Nile’s CORBA Implementation

The IDL to Java language binding [7] exactly specifies the Java interfaces and classes generated
by an IDL compiler. Therefore, it should be possible to use any available Java ORB without
changing the application code. In practice, some parts of the CORBA specification were under-
specified, requiring small adjustments to work around differences between ORBs. The main issues
encountered programming a CORBA application in Java were:

• The CORBA object model, at least compared to the flexibility of Java, is rather restrictive.
For instance, there is a complete separation of data structures and interfaces2; interfaces do
not extend, and classes do not implement, java.io.Serializable, making persistence
(a trivial operation in Java) rather cumbersome; all classes are final and member data are
public, thus making it more difficult to achieve flexible object models.

• Certain CORBA operations, such as ORB.resolve_initial_references(), are under-
specified meaning that some ORB-dependent code is necessary, or else such functions
should be avoided altogether.

• Any optimization when a CORBA object is used locally is not part of the specification.
• CORBA’s Name Service, CosNaming, is a single point of failure. Attempts have been made

to build a replicated Name Service [11] while still implementing the CosNaming interface.
However, this is not part of the CORBA standard.

Notwithstanding these difficulties, a successful and robust implementation of Nile was
achieved. The fundamental fault-tolerant requirement, namely restarting failed Subjobs, was met.
Nevertheless, there was a lingering deadlock problem, which we were reasonably convinced was
a bug in the ORB, that we were not able to resolve satisfactorily.

4 Nile’s RMI Implementation

Remote Method Invocation, RMI, has been part of the Java specification since JDK 1.1. It has at
least two distinct advantages over CORBA: RMI uses normal Java object semantics, and so the
full capability of Java can be used; since RMI is part of the Java language the process of filing a
bug report is less ambiguous, should a problem arise.

The RMI implementation of Nile was a prototype of limited functionality. However besides
performing extremely well while running a CLEO Monte Carlo farm [12], it provided useful
insight into the simplifications that could be achieved with RMI. A particular insight was gained
from the structure of the Subjob tree. In the CORBA implementation, nodes and leaves of the tree
implement the same interface – nodes are local within the Job Manager, whereas leaves are remote
in the Subjob Processors. In fact, CORBA tries to mask the distinction between a local and remote
object, which is not necessarily a good thing [13]. In particular, whereas a local object should
be very light, and therefore suitable for building into a deep and wide tree, a remote CORBA
object may be very heavy (in terms of resources such as memory and threads) and therefore very
unsuitable for such a purpose. The RMI version does not have this problem, because all Subjob
objects are local. If a tree and a distributed architecture are both to be kept, the solution is that
non-remote objects must be truly local.

5 Future Work

Investigation of RMI has led us to consider Jini [13] which appears to mitigate several fundamental
issues encountered building reliable distributed systems in general and Nile in particular. The

2This restriction largely goes away with the CORBA 2.3 “Objects by Value” [10] specification.



Jini Lookup Service offers many benefits: it provides the functionality of the Name Service; is
transparently replicated, removing an insidious single point of failure; use of attributes allows it
to be used as a general purpose object database. Jini’s leasing mechanism and distributed events
would be very useful in detecting and communicating failures.

Managing CLEO III data processing and analysis will be the next step in Nile development.
To accomplish this we will improve scheduling and data management, and add comprehensive
security and wide-area capability.

6 Conclusions

We have successfully implemented and used Nile as a CORBA application, written in Java. While
CORBA has been mostly satisfactory, it has raised some issues of distributed object systems.
A prototype RMI system largely corrects these problems, though its functionality is somewhat
limited. Our work with RMI leads us to believe that we can re-architect critical parts of Nile,
using technologies such as Jini, so that Nile has all the advantages of a distributed system with
very few, if any, of the disadvantages.

References

1 M. Ogg, G. Obertelli, F. Handfield, and A. Ricciardi. Nile: Large-scale distributed process-
ing and job control. In Proc. Int’l Conf on Computing in High Energy Physics, Chicago, IL,
September 1998.

2 F. Previato, M. Ogg, and A. Ricciardi. Nile’s distributed computing site architecture. In
Proc. Int’l Conf. on Computing in High Energy Physics, Berlin, paper F360, 7–11 April
1997.

3 A. Ricciardi, M. Ogg, and F. Previato. Experience with distributed replicated objects: The
Nile project. Theory and Practice of Object Systems, 4(2):107–117, 1998.

4 M. Athanas and D. Riley. The Nile fast-track implementation: fault-tolerant parallel pro-
cessing of legacy CLEO data. In Proc. Int’l Conf. Computing in High Energy Physics, pages
164–168, Rio de Janeiro, 12–18 September 1995.

5 K. P. Birman and R. van Renesse. Reliable distributed computing with the Isis toolkit. IEEE
Computing Society Press, 1994.

6 S. Maffeis. Run-Time Support for Object-Oriented Distributed Programming. PhD thesis,
Universität Zürich, 1995.

7 Object Management Group. The Common Object Request Broker: Architecture and Speci-
fication, Revision 2.2. February 1998.

8 Sun Microsystems Inc. Javatm Remote Method Invocation Specification, Revision 1.7. De-
cember 1999.

9 N. Brown and C. Kindel. Distributed Component Object Model Protocol – DCOM/1.0.
Internet Engineering Task Force, January 1998.

10 Object Management Group. CORBA/IIOP 2.3.1 Specification. October 1999.
11 L.C. Lung, J da Silva Fraga, J-M. Farines, M. Ogg, and A. Ricciardi. CosNamingFT – A

Fault-Tolerant CORBA Naming Service. In 18th IEEE Symposium on Reliable Distributed
Systems (SRDS99), pages 254–262, October 1999.

12 R. Baker, L. Zhou, and J. Duboscq. AMUN: A practicle application using the nile control
system. In Proc. Int’l Conf on Computing in High Energy Physics, Padova, Italy, February
2000. (to appear).

13 K. Arnold, B. O’Sullivan, R. W. Scheifler, J. Waldo, and A. Wollrath. The Jinitm Specifica-
tion. Addison-Wesley, 1999.


