
Elephant, meet Penguin: Bringing up Linux in BaBar

M. Dickopp4, S. Gowdy1;6, M. Kelsey5, P. Raines3, A. Romosan1, A. Ryd2

1 Lawrence Berkeley National Lab, USA
2 California Institute of Technology, USA
3 Stanford Linear Accelerator Center, USA
4 Technical University of Dresden, Germany
5 Princeton University, USA
6 Presenting Author

Abstract

During the past year much work has been done on BaBar by various collaborators to allow
us to utilise the Linux commodity platform. Some of the decisions made have been forced
upon us by outside constraints. Many recurrent problems problems were found and fixed in
the more than 2 million lines of code BaBar runs. This talk will summarise the process of and
the lessons learned in this venture.

Keywords: chep,linux,babar

1 Introduction

Over the past few years many experiments have been adopting Linux as one (or only) of their
platforms. For BaBar this has been complicated with use of C++, for which finding standards
compliant compilers is difficult.

BaBar decided to adopt Linux as a supported platform last year. The timescale for support
was 1st January 2000. Our Linux support has now been deployed, although there are expected still
to be a small number of problems which will not be found before general use.

2 The BaBar Linux Platform

The flavour of Linux finially decided on for BaBar was RedHat 6.0. Initially we developed it on
RedHat 5.2 but wished to move to a newer version. We were limited in our freedom due to the use
of the Objectivity object database, which is distributed as an archive library. This also determined
which C++ compiler we could use.

Objectivity was built on a RedHat 5.2 system using egcs 1.1.1 + patch 1. Therefore our
initial development platform imitated this.

A fraction of our FORTRAN code (�60 source files) used nonstandard F77 which meant
that GNU f77 would not compile them. To work around this we decided to buy a commercial
compiler, this would only be used for the nonstandard files. The Portland Group’s (http://www.
pgi.com) compiler met our needs. Almost all of the cases (where there was a problem) was due
to DEC STRUCTUREs. Shortly before New Year all of these STRUCTUREs were converted to
standard data types and therefore we will no longer require the commercial compiler.

In our initial attempts to move to RedHat 6.0 (and therefore glibc2.1) we found our appli-
cations which used Objectivity would not start up. After sometime it was discovered that this was
due to the commercial FORTRAN compiler containing a library called libpthread.a. Once this
was moved aside we started to use RedHat 6.0. We also changed to use egcs 1.1.2 + patches.

1The patch is required due to a bug in egcs with implementing an operator new in a templated class

Function Fixed in glibc2.1 New header file Comments
clock gettime No No
regcmp No No Deprecated
regex No No Deprecated
semctl Yes No Arguments incompatible
isastream Yes stropts.h
statvfs Yes sys/statvfs.h Linux used statfs

Table I: System functions missing in glibc 2.0

To summarise, the BaBar platform consists of;

� RedHat 6.0 Linux
� egcs 1.1.2 + patches (BaBar RPMs have been created)
� Lesstif 0.88.1 (version not thought to be crucial)

There are a couple of local configurations which SLAC will probably install on their ma-
chines (which includes the reference machine);

� Increased number of symlinks to follow from 5
� Increased number of processes from 512

These are kernel configuration options and therefore require a kernel rebuild.
Our collaborators are free to use whichever distribution they wish. However, any problems

must be reproducible on the reference machine at SLAC to eliminate system configuration issues.

3 System Problems

Previously our computing platforms were Compaq Tru64 Unix and Sun Solaris. Our initial at-
tempts to use Linux were based on the RedHat 5.2 distribution. This utilises glibc 2.0. Our code
contained uses of many functions which were not available with this version of glibc (and some
are still not available with 2.1).

To overcome this our normal method for working around platform deficiencies was used.
This involves a header file (called BaBar.hh) which is included at the beginning of every source file.
Within this file declarations are made of the missing functions. These functions are implemented
in the same package which contains this header file : BaBar.

However, for some cases we also had to add a header file which isn’t available with glibc.
These missing header files are distributed as part of our releases. Table I shows the details of these
patches.

There are also various preprocessor symbols which are not defined on Linux. Most of these
are used for signals in online code which is only actually used on Sun, however this code is also
compiled on Linux and OSF. An example of these are SIGEMT and SIGSYS. Definitions of these
have been added to BaBar.hh to allow compilation on Linux.

4 C++ Issues

A few recurrent issues needed to be fixed while porting the C++ portion (the majority) of our code.
Some of these were initially thought to be bugs in the compiler but most of them turned out not to
be.

The egcs compiler has one flaw that requires you to create temporaries in some circum-
stances. This is usually while creating an instance of an object in a method invocation of another
object, for example;

Problem Workaround
Protected Destructors never accessible Make Public
pow function with -O2 is incorrect Use -O
iostreams can’t read hex numbers with 0x Remove 0x from data files

Table II: Problems with egcs 1.1.2

ObjectA a;

a.(B());

would become;

ObjectA a;

ObjectB b;

a.(b);

Although, the problem is more complicated that this as the example does not reproduce the
error.

With egcs a template’s definition must be seen so that it can be instantiated in the source
file that uses it. We have a mechanism to accomplish this: as this was required in the past on other
platforms. However, many new templated classes hadn’t followed the guidelines and had to be
retrofited with this mechanism. This is simply to add the following near the end of the header file
for the templated class;

#ifdef BABAR_COMP_INST

#include "Package/MyTemplClass.cc"

#endif // BABAR_COMP_INST

and to make sure that the source file is not compiled into the library. At the moment all our
platforms defined BABAR COMP INST.

Another trouble with templated classes was due to inlined methods invoking an “operator
T*” directly without a this-> (which the compiler requires for context).

The last problem in our code which wasn’t due to a compiler problem was side effects
during an output operation. For examples;

HepSymMatrix a;

cout << a << a.invert() << endl;

is not guaranteed to do what you expect, and infact egcs does the inversion first.
A few compiler problems that we have worked around in our code are shown in Table II.
These compiler problems are all solved with gcc 2.95.2, however, this introduces other

troubles. Declaring a function without a return type is an error by default (-fpermissive reduces
it to a warning). Various places in our code attempt to pass a pointer to a function without an
ampersand before the function name, this is an error with gcc 2.95.2.

However, the real problem for us switching to this newer compiler is that the object format
is reported to be different and we do not have a build of Objectivity for this compiler. We are
(infrequently) making sure our code will compile with this compiler so that we can switch in the
future.

5 FORTRAN Issues

As mentioned in Section 2, a lot of our code used DEC FORTRAN STRUCTUREs. These have
now been removed, this was a fairly large effort to accomplish.

Several places in our code assumed that local variables kept their value over invocations of
the function. This is not the case by default with g77 (the Sun and DEC compilers SAVE variables
by default). SAVE statements have been added to facilitate this. Most of these were located in
magnetic field code.

Various symbols also change type in our code, although it has a performance penalty we
decided to add the -no-global option to allow this. We may revisit this in the future.

Another trouble which was found a couple of times was concatenating variable length
strings. g77 does not allow this and creating a fixed length temporary string is required. Checks
were also added to make sure that the variable length string was not longer than the temporary
string.

6 Build Issues

Our SoftRelTools package is used to maintain our build system. It was fairly easy to extend to in-
clude Linux. The various third party packages we use have their support included in GNUmakefile
fragment files (named arch spec <Name>.mk). Generally, these assume suitable values, however
a couple needed extra flags to be specified for Linux. An example for this is that CERNLIB 98
was built using an older version of g77 and we therefore have to fool the linker with -defsym

xargc=f xargc.
Last July we started doing production builds on Linux. Our Release Manager did this

without trouble. This has been very useful for the port even if the releases were not fully functional.
Before Linux was an officially supported platform it was necessary to test on Linux centrally

as our developers were not required to. The reason was to make sure that the code did not drift.
Usually something would need fixed in each release.

7 Conclusion

Linux is now an officially supported platform on BaBar. However, there will be a number of
problems which need general use to find. With our next production release (the first of 2000) this
will begin to happen.

We can look forward to the benefits this will bring. Many of our collaborating institutes
now have the majority of their CPU on Intel machines. This port will allow them to contribute to
our experiment’s Monte Carlo production.

As I see it there are two major problems remaining on the Intel Linux platform. These are
the lack of Objectivity distributions for the versions of glibc and compiler that we wish to use and
the lack of large file support. It is hoped that the first of these will be solved by collaboration
with other experiments wishing to use Linux and Objectivity. The solution to the latter may
take a little longer to arrive and the main hope at the moment is the XFS file system from SGI
(http://www.sgi.com/newsroom/press_releases/1999/may/xfs.html).

