
Lattice QCD with Commodity Hardware and Software

D. Holmgren, P. Mackenzie, D. Petravick, R. Rechenmacher and J. Simone

Fermi National Accelerator Laboratory, Batavia, IL, USA

Abstract

Large scale QCD Monte Carlo calculations have typically been performed on either com-
mercial supercomputers or specially built massively parallel computers such as Fermilab’s
ACPMAPS. Commodity computer systems offer impressive floating point performance-to-
cost ratios which exceed those of commercial supercomputers. As high performance network-
ing components approach commodity pricing, it becomes reasonable to assemble a massively
parallel supercomputer from commodity parts. We describe the work and progress to date of
a collaboration working on this problem.

Keywords: Lattice QCD, Commodity Computing, Massively Parallel Computers

1 Introduction

Lattice QCD is a method of studying Quantum Chromodynamics (QCD) numerically. A vigorous
lattice QCD research program is a necessary adjunct to experimental high energy physics research.
Results from lattice calculations are needed to extract parameters of the Standard Model of particle
physics from measurements obtained from experiment. The next generation of experiments such
as Babar, CLEO III and those at the Fermilab Tevatron will demand more ambitious lattice cal-
culations with theoretical errors at the level of those experiments. For example, Fermilab’s CDF
expects to measure xs at the percent level. To connect this to CP violation requires a similarly
precise QCD matrix element. This will require an estimated 10

2 to 10
3 fold increase in lattice

computation.
Large scale QCD calculations have typically been performed on either commercial super-

computers or on specially built massively parallel computers such as Fermilab’s ACPMAPS [1].
The next generation of lattice calculations will require a new generation of computer. Commodity
computer systems offer impressive floating point performance-to-cost ratios which exceed those
of commercial supercomputers. As high performance networking components achieve commodity
pricing and achieve greater bandwidths and lower latencies, it becomes appealing to assemble a
massively parallel computer from commodity hardware.

This concept is under investigation by a collaboration of high energy theorists and comput-
ing professionals representing Fermilab’s Theoretical Physics [2] and Distributed Systems Projects
[3] Groups, the MILC [4] lattice collaboration and the Cornell Theory Group [5].

2 Hardware

We have constructed a prototype cluster consisting of nine nodes.1 Eight of the systems are based
upon dual 500-MHz Intel Pentium-III processors and Intel L440-GX+ (“Lancewood”) mother-

1Work supported by the U.S. Department of Energy under contract No. DE-AC02-76CH03000.



boards. The ninth system is based upon a 600 MHz AMD Athlon processor and an FIC SD-11
motherboard. All systems have 128 MB of 100 MHz SDRAM memory.

The Athlon-based system, and seven of the Pentium-III systems, are interconnected via a
Myrinet network [6] consisting of M2L-PCI64A-2 PCI interface cards and an M2F-SW8 eight-
port switch. The nodes are further interconnected via a fast ethernet network. The nodes of the
cluster run RedHat 6.0 Linux. The Myrinet interfaces communicate via GM version 1.1.1 from
Myricom. MPICH [7] version 1.1.2 is used as the communications and synchronization API.

We believe that by using commodity components that we can construct computing clusters
which are easily upgradeable as more cost effective hardware becomes available. Such upgrades
could even be based upon processors from the various non-x86 families. This flexibility arises
because internode communications are based upon PCI interfaces, and the fact that Linux provides
a common operating system and development environment for all commodity hardware platforms.

3 Lattice QCD Tests

For the tests described below, we have selected the MILC collaboration’s Wilson quark propagator
solver. In the large-scale computations we envision, solving for quark propagators represents well
over 90% of the effort. Thus this solver is a good estimator of performance. The solver is written
within the MILC parallel framework. It is portable and tolerant to communications latencies, with
good overlap of communications and computation on parallel configurations. Communications are
implemented through standard MPI-1.2 calls. The code iteratively solves for propagators using a
sparse-matrix bi-conjugate gradient algorithm and incomplete LU preconditioning.

3.1 Single System Performance

Computer systems employ a memory cache hierarchy to match relatively slow main memory to
high clock speed cpus. System performance will depend upon data size and layout in memory. We
have tested Wilson solver performance for a range of problem sizes on our test cluster, as well as
on an Alpha-based and on a Xeon-based system as listed in Tab. I. All systems, except the Athlon,
have 500MHz processors. The systems have a variety of cache designs.

All systems ran Linux 2.2-series kernels. On each computer the code was compiled with the
gcc compiler. Each test was run on a single cpu (single process) in multiuser environments with
light to moderate system loads. For these one cpu tests, communications routines in the solver
code were replaced by functions that return memory references, hence, “communications” involve
zero data copies.

Results are shown in Fig. 1. Performance is measured by the number of kilo-sites updated
per second. Problem size is indicated by data size in megabytes. The numbers above the horizontal
axis show problem size in terms of hypercube volume. QCD computations are peformed on a four-
dimensional space time grid. The problem size thus scales like L4 where L is the number of grid
sites in each dimension of the hypercube.

The figure shows that for problem sizes <
�

0:5MB the Alpha has nearly twice the perfor-
mance of a PIII at the same clock speed. Scaling the 600MHz Athlon performance by 5=6, we
expect an Athlon to outperform a PIII of the same clock speed by about 17%.

Cache organization appears to be an important indicator of perfomance for data sizes less
than about 10MB. The Alpha’s larger 4MB cache appears to give it about a 40% performance
advantage over the PIII for a 3MB data size. We note a linear decrease in performance rather than
a rapid drop as the problem size exceeds cache size. We take this as evidence that our application
is reusing data already in cache.

Lattices of physical interest have L >

�
10 and in excess of 20MB of data. The figure shows



cpu clock (MHz) cache speed cache size (MB)
PIII 500 �0:5 0:5

PIII-Xeon 500 �1 1:0

Athlon 600 �0:5 0:5

Alpha 21264 500 �0:5 4:0

Table I: Features of systems tested in Fig. 2.

Figure 1: Single computer performance vs problem size on four commodity systems with different cpus.

that single processor performance for such data sizes is entirely limited by the bandwidth to main
memory, irrespective of cpu speed or cache design. For the Wilson solver and large data sizes,
main memory bandwidth is the most important indicator of performance.

System performance for cacheable data sizes is an important parameter when computations
are parallelized. Domain decomposition is used to distribute lattice sites among computer memory
spaces. For example, a 10 � 10 � 10 � 10 lattice may be partitioned on ten computers into
10 � 10 � 10 � 1 slices. There will be a speedup when a significant part of a sublattice fits in
cache. Cache speedup leads to important constraints on communications requirements in order to
hide latencies.

3.2 Parallel Performance

We examined parallel performance of the Wilson solver as a function of the numbers of cpus while
keeping the total lattice size fixed. We show runs for 63 � 12 and 12

3
� 24 lattices. The smaller

lattice shows the effect of cache speedup as data is distributed among more cpus. According to
our single cpu performance measurements, the 12

3
� 24 lattice is large enough that there should

be no significant cache speedup even when distributed over all available cpus.
A site update in the solver depends only on data from neighboring sites. Thus, when a lattice

is distributed among cpus, an update to a site on the surface of a sublattice requires data held in
another computer’s memory. For optimal lattice partitioning, the relative number of surface sites
decreases as 1=` for large ` where ` is the dimension of the sublattice. Hence, it is less demanding
to hide communication latencies when sublattices are large.

We produced test results (Fig. 2) for both Myrinet and ethernet, distributing parallel tasks
in two ways: allowing only one process per node or allowing two parallel processes per node. For



Figure 2: Performance/cpu vs number of cpus vs communications medium for two lattice sizes.

the 63�12 lattice we observe an increasing performance difference between Myrinet and ethernet
as the lattice is distributed over more cpus. Communications performance is more demanding for
small sublattices, and Myrinet latencies and bandwidth are better than those obtained with TCP
over ethernet. Note that the Myrinet per cpu performance rises to greater than the performance on a
single cpu. This speedup is the effect of larger portions of the lattice fitting into cache. Comparing
the two Myrinet curves we see a significant performance difference between distributing one task
per node and two tasks per node. We attribute this affect to a combination of contention for
memory and for the Myrinet interface, and task scheduling inefficiencies. Instrumentation of our
code will allow us examine this issue in greater detail.

For the 12
3
� 24 lattice we observe little performance difference between Myrinet and

ethernet for runs involving up to twelve cpus. TCP over ethernet, even with its significant software
latencies, was sufficiently performant for these runs. Based on our 63 � 12 results, we expect to
see a larger difference between ethernet and Myrinet when the 123 � 24 lattice is distributed over
a larger number of nodes.

4 Planned Work

Planned future work includes testing Myrinet hardware on Alpha and perhaps G3-based systems,
as well as characterizing the performance of clusters with multiple layers of Myrinet switches.
Assuming encouraging results, we hope to consturct a much larger cluster, on the order of 1000
nodes. Towards this end we are continuously investigating and developing the tools and techniques
required to manage and monitor extremely large clusters.

References

1 http://www-isd.fnal.gov/acpmaps/acpmaps.html

2 http://www-theory.fnal.gov/

3 http://www-isd.fnal.gov/dsp/

4 http://physics.indiana.edu/~sg/milc.html

5 http://w4.lns.cornell.edu/public/theory/

6 http://www.myri.com/

7 http://www.mcs.anl.gov/mpi/mpich/


