WIRED - World Wide Web Interactive Remote Event Display?!

A. Ballaminut?, C. Colonello?, M. Dénszelmart E. van Herwijned D. Kdpeg, J. Korhone#,
M. Litmaatt®, J. Perp, A. Theodorog D. Whitesod, E. Wolff

1 Dipartimento di Fisica, Universita degli Studi di Udine, Via delle Scienze 208, 33100 Udine, Italy
2 CERN, CH-1211 Geneva 23, Switzerland

3 NIKHEF, P.O.Box 41882, 1009 DB Amsterdam, The Netherlands

4 University of Oulu, Linnanmaa BOX 4500, FIN-90401 Oulu, Finland

5 Fermilab, P.O.Box 500, Batavia IL 60510-0500, U.S.A.

6 SLAC, P.O.Box 4349, Stanford CA 94309, California, U.S.A.

Abstract

WIRED?Z is a framework, written in Java, to build High Energy Physics event displays that can
be used across the network. To guarantee portability across all platforms, WIRED is

implemented in the Java language and uses the Swing user interface component set. It can be

used as a stand-alone application or as an applet inside a WWW browser.

The graphical user interface allows for multiple views and for multiple controls acting on
those views. A detector tree control is available to toggle the visibility of parts of the events
and detector geometry. XML (Extensible Markup Language), RMI (Remote Method
Invocation) and CORBA loaders can be used to load event data as well as geometry data, and
to connect to FORTRAN, C, C++ and Java reconstruction programs. Non-linear and
non-Cartesian projections (e.qg. fish-eye, rho-phi, rho-Z, phi-Z) provide special views to get a
better understanding of events.

WIRED has grown to be a framework in use and under development in several HEP
experiments (ATLAS, CHORUS, DELPHI, LHCb, BaBar, DO and ZEUS). WIRED event
displays have also proven to be useful to explain High Energy Physics to the general public.
Both CERN, in its travelling exhibition and MicroCosm, and RAL, during its open days, have
displays set up.

Keywords: HEP Event Displays; Java; RMI; XML; CORBA

1 Introduction

The initial version of WIRED[1] was written to study the, at that time, still immature Java
technology on the DELPHI experiment by creating a fairly visible application, an event display.
WIRED was an applet that could be downloaded in a WWW browser, and physicists all over the
world could see and study events. Over time Java matured, became quite a lot faster and more
portable. The early version of WIRED was rewritten completely to accomodate multiple
experiments and to put emphasis on the visualization of High Energy Physics events.

Today WIRED] 2] isaframework[3] to build High Energy Physicsevent displays. It can run
in stand-alone mode or in aweb browser and in either mode it can have remote access to datavia
aCORBA or RMI server. Experiments normally extend the framework via plug-in modulesto give
WIRED some experiment-specific behaviour. WIRED comes with a powerful graphics engine,
which is specially made to handle the display of events in different and sometimes special
projections.

1 A longer version of this paper is also available.
2 URL: http://wired.cern.ch/

2 Architecture

The architecture of WIRED is based around a client-server model. WIRED can be run in three
different basic configurations, as shown in Figure 1. In the first configuration the client isrun in
stand-alone mode, pre-installed on a machine, with local accessto geometry and event data on that
machine in the form of files. The second configuration is different from the first in that the client
now receives its geometry and/or event data from a remote server. Local access to data is till
possible. Inthe last configuration WIRED isrun as an applet inside a browser. The actual WIRED
code is downloaded from a WWW server and for geometry and event data the same server asin
the second configuration is used. Dueto security restrictionsno local dataaccessis possible. Other
configurations, which involve gateways to stream the data via specified servers, are also possible.

WIRED
Application

WIRED a
Code

WIRED
Application

Geometry
and/or

Geometry
and/or Events WIRED b
Code
-
f -
-
Vél(})?dEeD o - Browser
- -

Geometry
and/or Events

Figure 1: WIRED running in three different configurations: a - stand-alone, with local code, geometry and
event data, b - in client-server mode, with local code, but remote geometry and event data and c - in browser
mode, where code, geometry and event data are all downloaded into an applet inside a web browser.

The authors chose to implement WIRED in the Java language[4] using the Swing user interface
kit[5], both of which allow for easy portability and running as an applet. The server may bewritten
in another language, such as C or C++, to allow for easy coupling with an event reconstruction
framework.

The WIRED client Graphical User Interface contains a View Top and a Control Top, as
shown in Figure 2. The first alows the user to create several different views on his event. Each
view can bedirectly manipulated with the mouse and context sensitive popup menus allow the user
to do most of the interaction. The Control Top shows the different controls, which may act on one
or more selected views. These controls can show the status of different views and alow for more
complicated interaction. An optional console will be added to allow the user to interact via a

Menu Bar

X 2 @ 3 & @
Nescape Pinl_ Secuty

Fobsd _fiome _Seach

D] &l [E | Tool Bar

3

[E5(run: 1, event: 1) - Parallel [_[O[x] [L 2 wetttal (B Contoct 5] Peopie I Yelow Pages ' Dowrlos 4 Chamnsts
gl
I/ // View Top WIRED - BaBar
o Fie_Options Deskion Controls Window_Help

Dz s &

Phi]
HF

WIRED Applet inside

o O Rhq A = i e
rv_ bec 3 Ent z¢ cific Popup | I— (|, \ctsCape broswer
B0 ki 2RI Console
i : a
w17 251 wired.cfg Rho-Z _‘

= Sl @ oae @ 2]

View Spe-

Figure 2: The WIRED Graphical User Interface: on the left the stand-alone version of WIRED showing the
ATLAS detector in two views on the view top. The control top shows the component structure of the event.
Toolbar and menubar allow for access to general functionality, while popup menus allow for view specific
functionality. On the right the browser version of WIRED, showing the BaBar detector, with identical
functionality.

scripting language. The client as a whole, the Menubar, Toolbar, View Top, Control Top and
Console, is an applet which can be used in browser mode.

3 Data Access

Event and geometry dataisread into WIRED using aloader. Thisloader may load datafrom alocal
or remote file system, by using for instance XML, or it may use a communication protocol, such
as CORBA or RMI, to access aremote server and load objects directly into memory.

XML is a standard to define human and machine readable formats[6]. WIRED uses XML
to define generic and specific formats for writing out geometry and event files from reconstruction
or analysis programs. Though no true interaction between WIRED and the supplying program is
possible, XML provides a fairly easy mechanism to have access to data. An off-the-shelf XML
parser and other XML tools are used in WIRED.

RMI (Remote M ethod Invocation) or CORBA[7] can be used to provide adirect connection
between WIRED and an event reconstruction program. RMI only allows Javato Javaconnections,
however the INI (JavaNative I nterface)[8] can be used to interface to other languages. Or CORBA
provides an alternative to connect to remote servers written in Fortran, C or C++. Both RMI and
CORBA allow the full event object structure to be transported into WIRED.

Different experiments opt for different solutions. WIRED uses a class plug-in structure, see
Figure 3, to specify the option used. Two experiment-specific |oaders need to be written to load
both geometry and event data. Both loaders, which either use XML, CORBA or RMI, will map
geometry and event data onto so called representabl es. These representabl es are for instance pieces
of the detector, tracks, tracker hits or calorimeter hits, and each contain enough information to be
displayed. The graphics engine takes the representables, converts them, and shows them on the
screen. The integration of a generic interface for both representables and their representation is
ongoing[9]. .

4 GraphicsEngine

The WIRED graphics enging[10] uses a traditional graphics pipe[11] to convert data before
displaying it (see Figure 3). Representables (tracks, hits, calorimeter hits, ...) are represented by

Event

Loader Event and GUI
Geometry
Cache Graphical User

Interface

Geometry
Loader

Representables

WIRED
Application
or Applet

Mandatory experiment specific plug-in classes

Representations
Projectables
Projections
Drawables

Optional experiment specific plug-in classes

Figure 3: The plug-in architecture of WIRED. Several mandatory experiment specific plug-in classes are
needed to tell WIRED what to show on the screen. Optional plug-in classes may add extra functionality and
behaviour to WIRED.

projectables (sgquares, lines, ...) by using representations (hit as square, track as line, ...). These
projectables are 2D symbols with 3D coordinates. These coordinates are then projected into
drawables by using one or more cascaded projections. Drawables are 2D symbols with
2D coordinates and can therefore be drawn on the screen. The use of 2D symbols for hits becomes
clear, see Figure 4, when the hits of an event should always be recognizable even if one zoomed
out very far. A traditional 3D graphics engine will scale down the hits accordingly, while the
WIRED graphics engine keeps its symbols - the hits - at the same size. WIRED provides a set of
standard representables, projectables and drawables and some standard representations and
projections, to convert one into the other.

Projectionsin WIRED are specified in terms of functions and can therefore be linear as well
as non-linear. Parallel, flat, scalable, rho-fish-eye, XY Z-fish-eye, rho-phi, rho-Z and phi-Z are a
few of the many possible standard projections, and the user can easily extend this set. Projections
can be cascaded: for instance, to obtain a scalable rho-fish eye one would apply a scalable
projection followed by an rho-fish-eye projection. Special projections can be very useful to
enhance a particular aspect the user is studying[12]. The rho-fish eye projection, for instance,
blows up the inner parts and compresses the outer parts of the detector, thereby not sacrificing the
visibility of the latter, as would be the case for an ordinary scalable projection.

The drawables, which appear on the screen, are layered to allow the event to be drawn on
top of less important geometry information. Layering also handles the drawing of thin frames
around the drawables and this enhances the clarity of the picture substantially.

5 Conclusions

WIRED provides a framework in Java to write High Energy Physics event displays. It is highly
portable, runs as a stand-alone application or as an applet inside a WWW browser. It uses a
client-server architecture to allow the user to access geometry and or event data locally or
remotely. The Graphical User Interface with its View Top and Control Top alow the user to easily

Scaling using a
3D graphics
.~‘ engine

/
All drawables are

/\ based on volume

Better visible picture by using
frames/shadows behind tracks and hits

Scaling using the
WIRED graphics
engine

-

All drawables are
based on fixed
sized symbols

Figure 4: Conventional 3D graphics engines scale all volumes they draw (top graphs), while the WIRED
graphics engine scales the 3D coordinate, but not the symbols, such as the hits and the tracks (bottom
graphs). Frames/shadows around the symbols enhance the visibility of the picture.

view events in different ways and to interact with them. Three methods of accessing data, via

XML, CORBA or RMI, provide every experiment with a way to write their plug-in modules.
WIRED's powerful graphics engine is unique in the sense that it handles non-linear and
non-cartesian projections. The layering model used by the graphics engine produces nicely
enhanced pictures.

References

1 M.C. Coperchio, M.Ddnszelmann, P. Gunnarsson, “WIRED - World-Wide Web Interactive Remote
Event Display”, 1997 CERN-97-01.

2 M.C. Coperchio et al., “WIRED - World-Wide Web Interactive Remote Event Display”, Computer
Physics Communications 110 (1998) 155-159.

3 Don Roberts and Ralph Johnson, “Evolving Frameworks: A Pattern-Language for Developing Object

Oriented Frameworks”, Pattern Languages of Program Design 3, Addison-Wesley, 1998.

James Gosling, Bill Joy and Guy Steele, “The Jianguage Specification”, Addison-Wesley, 1996.

Robert Eckstein, Marc Loy & Dave Wood, “Java Swing”, O’'Reilly, 1998.

Tim Bray et al., “Extensible Markup Language (XML) 1.0”, W3C, 1998.

Elliotte Rusty Harold, “Java Network Programming”, O'Reilly, 1997.

Rob Gordon, “Essential JNI: Java Native Interface”, Prentice-Hall, 1998.

Joseph Perl, “HepRep: a Generic Interface Definition for HEP Event Display Representables”,

SLAC-PUB-8332, Stanford, California, January 2000.

10 A. Ballaminut, “A Graphics Engine for High Energy Physics Event Displays”, Thesis, University of
Udine, Italy, 1997/1998.

11 J.D. Fowley et al., “Computer Graphics: principles and practice”, 2nd Edition, Addison-Wesley, 1996.

12 H. Drevermann, D. Kuhn, B.S. Nilsson, “Event Display: Can we see what we want to see?”, 1995
CERN-ECP/95-25.

©O© oo~NO OA~

