Root For Run 11

P. Canal!, S. Panacek!, P. Malzacher -2

L Fermi National Lab, USA
2 GSI, Germany

Abstract

Following a comprehensive understanding of the requirements for Physics Analysis, Fer-
milab adopted the use of ROOT for the Collider Experiments, CDF and DO in the upcoming
data-taking run - Run Il. To meet the needs of the experiments, Fermilab has collaborated with
the Root Development Team. After holding a workshop for ROOT users, the Fermilab Com-
puting Division agreed to contribute to the development and support of ROOT. In this paper,
we will review the contributions we have made and plan to make to ROOT. These include:
The script compiler, the integration of CLHEP’s physics vector, and the self-describing file
format.

An important requirement for DO and CDF is to have a robust and maintainable software
tool for analyzing physics data. We have worked closely with the ROOT development team,
testing and building ROOT for robustness and maintainability. We have also developed two
hands-on courses and a user’s guide introducing ROOT to the novice user. These courses
and document go over both, the initial steps of using ROOT as well as features that are more
advanced.

Keywords: ROOT,Data Analysis,Runll,1/O

1 Requirements

Before adopting software for Physics Analysis for the upcoming Run I1, Fermilab and the Collider
Experiments, CDF and DO gathered a set of requirements. They covered two main areas, the
functional requirements, and the support and maintenance requirements. The software tool needed
to be able to access, analyze, and present (in reports and publications), the exceptionally large
volume of data produced by Run Il. Some other requirements are:

e A scripting language giving access to objects (as opposed to some simpler structure, such
as arrays of numbers).

e The ability to run on several platforms

e A modular architecture, so that parts can be replaced and more parts can be added

The other requirements were captured in a questionnaire attempting to quantify product
support, portability and ease of maintenance. There were also questions on how feasible it would
be to collaborate with the product developers. This point was particularly important for freeware
packages and software developed in the HEP community. In particular, it was noted that in making
local additions or modifications to a product, one runs the risk of diverging from the code supported
by the product supplier. A close two-sided collaboration was an absolute requirement.

The candidates for such a tool were Histoscope, LHC++, IDL, and ROOT. We found that
ROOT was the closest to meeting our requirements. Histoscope lacked the scripting language, it
would have taken a year or more to implement one. LHC++ was scheduled to be used in 2005 and

was incomplete, and IDL had limitations on the size of data sets. In the end, we chose ROOT as
the best tool available to do the job, however, some requirements were only partially met.

2 Workshop

The ROOT team enthusiastically welcomed our request for collaboration, and it was kick-started
by a short but very fruitful visit of the new Fermilab ROOT support team to CERN, during which
a few outstading issues were already resolved. Since several other US HENP Experiments were
considering ROOT, Fermilab decided to hold a US HENP ROOT Users Workshop in March ’99.
During this sucessfull workshop developers and users agreed on a list of the most urgent features:

Improved robustness and stability, especially in the I/O subsystem
Automatic handling of STL containers and strings

Improved documentation

Interface to the CLHEP library

Multi-threading

Interface to SQL

3 Workshop Follow-up

3.1 Improved robustness and stability, especially in the 1/O subsystem:

The External Preprocessor For CINT

One of the complaints about CINT was the limitation of its C preprocessor. It can expand C
macros only on two levels. To circumvent these limitations, CINT is capable of using an external
preprocessor. However, using an external preprocessor did not work when CINT was used with
ROOQOT. The Fermilab ROOT team updated both ROOT and CINT to enable this feature.

The Modularization of ROOT

The CERN ROOQOT team has modularized the source code into shared libraries starting with
the 2.23 release. Now, the libraries are loaded when they are needed, and when users are designing
ROOT applications they can limit the number of ROOT libraries linked in.

The Script Compiler

One of our major contributions is ROOT’s Script Compiler. The Script Compiler gives the
ROOT user the choice of compiling a ROOT macro rather than using CINT and interpreting it. It
compiles the ROOT macro and produces a shared library. The advantages are:

The execution is about five times faster because the code is compiled rather than interpreted.
It provides C++ capabilities beyond what CINT provides. For example it supports templates
and the STL library to the full capability of the compiler
Syntax checking is more thorough than CINT, and the error messages are more descriptive.
It encapsulates all the steps needed to make a C++ source file available to ROOT. It can be
used as a substitute for relatively complex makefile rules.

On the other hand, it takes longer to load the macro with the Script Compiler because of
the compilation time. In addition, a macro running with the Script Compiler can not be reloaded
because a C++ shared library can not be unloaded and reloaded. The compiler and compiler
switches used by default are the same as those used to build the current root executable (the one
from which the script compiler is invoked). These default values can be easily changed.

User Support, Deployment and Testing

We were concerned about being stuck with features that were implemented in a way that
did not match the needs of the experiments, or with ‘features’ which we considered to be bugs
and which could handicap us. To address this, we take two initiatives. First, we educate users on
techniques and features they may have not been aware of. Second, we act as the central point of
contact for major problems encountered by the experimenters. We provide help in determining if
a particular behavior is due to a misunderstanding or to a bug in ROOT. We also gather feature
requests and advocate them to the ROOT developers. Being the point of contact has worked out
well. We have been able to study ROOT in detail, probably more so than the casual ROOT user.
This allows us to quickly understand the problem and often provide a patch for it. In addition, since
we represent a larger number of experimenters, we have a strong voice in discussing improvements
and new features. We found the CERN ROOT team very eager to collaborate, and were pleasantly
surprised at their willingness to take our contributions into consideration.

We wanted to insure a high consistency of the ROOT releases used by the experimenters of
Run 1. To do so, we use Fermilab’s product deployment tool (UPS/UPD), and we run and analyze
the ROOT test on all the Run Il platforms.

Automatic Handling of STL Containers and Strings, 1/0 improvements

The ROOT team has improved the ROOT file format to include a byte count that enables
graceful recovery from reading unrecognized objects.

The Script Compiler added the capability of using STL containers. In addition, rootcint,
the ROOT dictionary generator, was upgraded by the CERN ROOT team to properly handle STL
containers and strings.

3.2 Improved Documentation And Education

Elaine Lyons, a summer student and wife of a visiting physicist, was tasked with writing a “Get-
ting Started with Root” document. She wrote an excellent document by interviewing ROOT and
PAW users, and by learning ROOT herself. She used a novel approach to getting users started
by simply telling them how to use the GUI, ignoring the command line for the first chapter. In
no time, the new user was opening files and looking at histograms. From the ”Getting Started”
document, a hands-on Root Class (ROOT 101) evolved. The class has several short lectures fol-
lowed by exercises to be completed in class. We had two instructors, one to speak and the other
to demonstrate on the projected computer screen the task. It was very successful; we taught 140
people in classes of 12 - 20. We also developed ROOT 102. We first taught it in November *99
and up to now have taught about 60 people. Its format is the same as ROOT 101 with emphasis
on building and reading Root trees. When developing ROOT 102 we found we needed a basic
introduction to C++ for ROOT users. We put one together and made it available on the website
but did not teach it.

The statistics show that the C++ introduction received almost as many visitors as the ROOT
102 class. The statistics for the website are: 2537 hits for Root 101, 645 hits for Root 102, 532
hits for the C++ basics. The classes saved us time answering the same basic questions, it saved the
new ROOT user frustration and the time to find basic but buried information, and it also helped
ROOT’s popularity. The tutorial’s website is at: http://www-pat.fnal.gov/root

3.3 Interfaceto CLHEP

The Fermilab ROOT team provided ROOT with a new copy of the Vector package from CLHEP. A
few additional methods were needed for backward compatibility. We will continue to implement

developments in the CLHEP PhysicsVector classes in ROOT. This duplication of code is neces-
sary because Physics Vectors are a very frequently used HEP concept; therefore, ROOT needed
to provide an implementation without requiring the user to download CLHEP. So rather than im-
porting the complete CLHEP source code, only the Vector package was imported. Although the
interface is similar, we adjusted the class hames for ROOT to avoid any confusion. We also plan to
introduce a package that will depend on both ROOT and CLHEP. It will provide a set of routines
to access all the CLHEP classes from ROOT command line, and save them in ROOT files.

3.4 Multi-threading, Interfaceto SQL

Thanks to contributions from GSI, multi-threading will be available soon. The CERN ROOT team
added an interface to SQL.

3.5 Other Fermilab ROOT Development Projects

In addition to the requests from the workshop, we wanted to contribute other development ROOT.
Automatic Documentation

The ROOT’s automatic documentation feature (the THtml class) uses the header and imple-
mentation files of a class and produces HTML describing the interface and offering links to source
files. We saw that inline functions cannot be documented and local variables are not recognized
and thus they do not have a link to their class definition. In addition, the information provided
could be improved. We plan to add a click-able inheritance diagram, and a more flexible orga-
nization of the list of member functions. For example, we plan to add a view where all member
functions, both inherited and local, are listed together.

Self-describing File Format

ROOT users can save their own objects to ROOT files. The objects are written to and read
from file by the Streamer method. This makes it necessary to have access to either the source code
or a shared library supplying the Streamer. If the Streamer is not available, for example if the
source code was lost or changed, the objects can not be read from the file. We are working with
the ROOT developers to change the ROOT file format to be self-describing. This means that along
with the object, a description of its Streamer is saved to the file. It will enable the reading of the
object data members without having access to the object’s source code. Note that saving an object
in a split-mode ROOT Tree already provides this functionnality.

3.6 Conclusion

A year after making the decision to use ROOT for HEP analysis in Run Il, we have more con-
fidence in our decision and have addressed the issues presenting the greatest risk. What made it
work? We think these were the main ingredients:

e The unprecedented support by the CERN ROQOT team. In our experience commercial ven-
dors cannot provide such customization and support, not to mention direct access to the
developers/architects.

e The makeup of the skills and personalities of the Fermilab ROOT team. It was crucial to
have technical talent that could contribute code so that the CERN ROOT team did not only
receive requests but also solutions. It was also important to have communication skills to
educate and help users.

e The specific issues generated at the workshop, and the timely follow-up. Having specific is-
sues gave us something to work on, and improving the robustness and stability of the ROOT
reduced not only our risk but also made ROOT a better candidate for other experiments.

