
Java Analysis Studio

A.S. Johnson1

1 SLAC, PO Box 4349, Stanford University, CA 94309, USA

Abstract

This paper describes version 2 of Java Analysis Studio, an experiment independent data
analysis tool for High-Energy physics. We describe in particular the JASHist bean for
displaying histograms, and improvements to the GUI included since the previous release of
JAS. We will also discuss the experiences of some experiments that are currently using JAS
including Babar and the Linear Collider Detector (LCD) group.

keywords JAS, Java, Analysis, Histogram, XML

1. Introduction

Java Analysis Studio (JAS) is a graphical application for analysis of high-energy physics data.
The application is independent of any particular data format, so that it can be used to analyze
data from any experiment. The application features a rich graphical user interface (GUI) aimed
at making the program easy to learn and use, but which at the same time allows the user to
perform arbitrarily complex data analysis tasks by writing analysis modules in Java using the
built in editor/compiler. The application can be used either as a standalone application, or as a
client for a remote Java Data Server. The client-server mechanism is targeted particularly at
allowing remote users to access large data samples stored on a central data center in a natural
and efficient way. JAS is written entirely in Java and will run on any platform with a Java virtual
machine. The basic functionality of Java Analysis Studio 1.0 was covered at the previous CHEP
conference, so given the limited space/time available this paper will cover primarily additions
and improvements implemented since then and incorporated into release 2.0. Readers interested
in more detail are referred to our CHEP 981 paper or to our web site at http://www-
sldnt.slac.stanford.edu/jas

2. The JASHist Bean

One of the key components of Java Analysis Studio is the JASHist bean, which is responsible
for the display of histograms and scatter plots. Since the previous release of JAS support for 2-D
histograms has been added by integrating the 2-D plot features of the Babar JavaHist package2.

The JASHist bean is designed using the model-view-controller pattern, so that data to be
displayed need only implement a simple java interface and need have no other dependence on
the JAS package. This makes interfacing arbitrary data to the plot bean very straightforward.
Care has been taken in the design and implementation of the JASHist bean to ensure that it is a
modular component that can be used easily in other applications. A chapter in the JAS Users
Guide describes how to do this3.

The current JASHist bean includes support for:
• Display of 1-D histograms, 2-D histograms and scatter plots. Scatter plot support is

optimized to handle up to millions of points.�
• Overlaying of several histograms or scatter plots on one plot.
• Interactive fitting of arbitrary functions to 1-D histograms.

• Numeric or time axes, plus axes with named bins.
• Many display styles that can be set interactively or programmatically.
• Dynamic creation and display of slices and projections of 2-D data.
• Direct user interaction, by clicking and dragging.
• Data that is constantly changing, including very efficient redrawing to support rapidly

changing data (handles over 100 updates/second).
• Printing using both Java 1 and Java 2 printing models. High quality print output is available

when using Java 2.
• Saving plots as GIF images or as XML. Support for encapsulated postscript and PDF is in

progress.
• Custom overlays which allow data to be displayed using user defined plot routines for

specialized plots.

2.1. Servlet Support

One way in which it is possible to use the JASHist bean is in a Java servlet4. Java servlets
provide functionality vaguely similar to Java applets, except that whilst an applet runs in the
browser (client) the servlet runs on the web server, and sends its contents to the browser either as
HTML or as an image. While an applet has some advantages, especially if the data to be
displayed needs to be updated rapidly, servlets are generally much easier to setup since they do
not rely on the browser (correctly) supporting Java. The model-view architecture used by the
JASHist bean means that typically all that is needed to implement a particular servlet is a simple
adaptor to convert the actual data source to the JASHist DataSource interface. Instructions
illustrated with several examples are available in the JAS servlet How To5.

2.2. XML Support

The JASHist bean is able to read and write plots as Extensible Markup Language6 (XML) files.
XML is a markup language similar to HTML except that it allows arbitrary tags that can be
defined in order to efficiently and accurately represent data in any particular problem domain.
The XML format supported by the JASHist bean has been designed to be independent of the
underlying JAS architecture, in the hopes that it can form the basis of an HEP wide mechanism
for the exchange of histograms between applications. Since XML is an ASCII format it is also
possible to write histogram descriptions by hand or to generate them from a script. More details
in the XML support in JASHist are available in the JAS XML How To7.

2.3. 3-D Scatter Plots and Lego Plots

Andrey Kubarovsky and Joy Kyriakopulos at Fermilab have been using some of the experience
they gained in working with HistoScope8 to develop Lego plots and 3D surface and scatter plots
in Java using Java’s 3D API9. Prototype implementations of these 3D widgets exist, and we are
currently working with them to integrate the 3D functionality into the JASHist widget. Since the
Java 3D API is a Java “standard extension” rather than a part of the core Java library, we will
exploit Java’s dynamic code loading capabilities to make sure the functionality gracefully
degrades in the case where the 3D API is not available.

3. The Java Analysis Studio GUI

Java Analysis Studio features a full-featured Graphical User Interface including a built in editor
for writing Java Analysis routines and built in compiler/loader. The graphical user interface also
features a complete help system, wizards to help new users get started, facilities for viewing and
manipulating plots, and is extensible via “Plugins” written in Java to provide user or experiment
specific features.

3.1. JEdit Syntax Highlighter/Editor

In the previous release of JAS we used an extension of the Swing Editor Pane to provide a
simple Java editor with syntax highlighting. We have now switched to using the SyntaxTextArea
bean written as part of the JEdit editor10. By incorporating this bean we have been able to get
markedly improved functionality with little effort on our part (thanks to the hard work of the
JEdit authors). In addition we plan to integrate more of the JEdit features in the future, such as
text search and replace, and also hope to be able to support JEdit plugins. Since many JEdit
plugins are being developed, including plugins that support automatic code completion and IDE
features such as integrated debugging, this should enable us to rapidly add very useful additional
functionality to the JAS framework.

3.2. HTML Page Display

Another powerful feature that we were able to add with relatively little work by exploiting
existing Java functionality is the ability to display HTML pages within JAS. The JEditorPane
within Java’s Swing toolkit is able to display most HTML 3.2 pages, and can be extended to
support custom embedded Java objects. We have used this functionality to make it possible to
embed JASHist plots within HTML pages, using the HTML OBJECT tag. This functionality
allows us to embed tutorial information and demos within JAS, and can also be used in online
monitoring applications to display predefined pages of plots to users.

4. Online monitoring API

JAS supports a number of API’s designed to allow extensions to be build without having to
delve into the internals of the JAS application, and in such a way that they are likely to continue
to work with future releases of JAS. We have recently added a new API specifically to support
online monitoring applications. The API provides for:
• Interfacing the JAS server to a pre-existing set of histograms which are updating in real

time.
• Communication between the client and the server so that Plugins installed in the server can

be used to send commands to the server.
This API is described in more detail in the JAS Online Monitoring How To11.

5. Open Source Model

JAS is now an open source project, with source code browsable directly from the JAS web site
(using jCVS servlet12), or accessible using any CVS client. The instructions for gaining read-

only access to the CVS repository are available on the JAS web site, and read-write access is
available to registered developers. Our intention is to continue to refine the design of JAS to
make it easier to integrate with other applications and our hope is that making the source
available will make it easier for other to understand how it works, and to contribute fixes and
improvements.

In order to further facilitate cross-platform development we have adopted jmk13, a pure
Java utility similar to make. This enables JAS to be built on any platform with a Java
Development Kit (JDK) available.

6. Examples of Use

6.1. Linear Collider Detector

The US Linear Collider Detector (LCD) group has build an entire reconstruction and analysis
framework in Java, which can either be run standalone or inside Java Analysis Studio. As part of
this effort some standard 3-vector, 4-vector, event shape and jet finding routines were developed
and these have subsequently been integrated into the physics utility section of JAS 2.0.

The LCD group has used the “Plugin” functionality of JAS to provide an event display
that can be run inside JAS and automatically adapts to different detector geometries. The LCD
group has also set up a central data repository at the University of Pennsylvania running the Java
Data Server software provided with JAS so that physicists anywhere can use the JAS client to
connect to the Penn server and analyze the data stored there.

6.2. Babar

Babar is using JAS as a means of presenting online monitoring histograms to physicists on shift
in the Babar control room. They use a three-tier approach using a server that acts as a gateway
between their CORBA based distributed histogram facility and JAS’s RMI based client/server
communication protocol. The server is implemented in Java and uses the JAS online monitoring
API. Histograms are displayed in the JAS client using a HTML pages with embedded “live”
plots for each detector subsystem. The HTML pages also provide descriptions of the plots, and
contain hyperlinks to additional pages with more detailed diagnostic histograms. Babar also uses
the custom overlay feature of JASHist to provide specialized plots such as online “scalers”.
Code for the custom overlays can be dynamically downloaded from the server to the JAS client
so there is no need for special software to be installed on the client.

7. Java Performance and Experience

Our experience in using Java is that it is an extremely good language for developing GUI
applications and for rapid prototyping of analysis and reconstruction tasks. We have found the
cross-platform compatibility to be excellent, with most development being done under NT, and
the resulting code “just working” under Unix (several people have also reported success at
running JAS on the Macintosh).

Java performance has continued to improve over time. IBM has recently released versions
of Java incorporating their optimized just-in-time compiler that run under AIX, Linux, OS/2 and

Windows and which give almost a factor of 10 improvement in speed over earlier Java
implementations. Experience with the LCD reconstruction code has shown that even pattern
recognition and fitting code can be implemented in Java and give very competitive performance.

The rapid development of Java has not been without problems however, as the rush to add
more functionality to the language has sometimes left more mundane features and bug fixes
languishing. One area where Java has so far been weak is in the printing arena, where until
recently it was very hard to produce high quality print output. The printing engine is
dramatically improved in release 1.3 of Java, and once this becomes widely available this
particular limitation should be fixed.

One cloud on the horizon is Sun’s failure to act on their earlier commitment to submit Java
for international standardization. Unfortunately this may limit people’s willingness to rely on
Java for projects with the extremely long lifespan of today’s large HEP experiments.

Acknowledgements

Most of the features described in this paper have been implemented by Peter Armstrong, Kevin
Garwood, Jonas Gifford and Azhar Zuberi, students working at SLAC from the University of
Victoria. LCD and Babar collaborators including Gary Bower, Kevin Rennert and Alex Samuel
have also made significant contributions.

References

1 Java Analysis Studio, paper published in the CHEP 98 proceedings, http://www-
sldnt.slac.stanford.edu/jas/documentation/Chep98/Chep98.htm
2 Scott Metzler and Alex Samuel, http://www-
sldnt.slac.stanford.edu/hepvis/Papers/Web/19/dhpcorba.html
3 Using the Plot Widget in Your Own Applications, http://www-
sldnt.slac.stanford.edu/jas/documentation/usersguide/jashist/default.shtml
4 See the Java Servlet specification - http://www.javasoft.com/products/servlet/2.2/
5 JAS Servlet How To, http://www-sldnt.slac.stanford.edu/jas/Documentation/howto/servlet/default.shtml
6 See the XML specification at: http://www.w3.org/XML/
7 JAS XML How To, http://www-sldnt.slac.stanford.edu/jas/Documentation/howto/xml/default.shtml
8 Histo-Scope Plotting Widget Set, http://www.fnal.gov/fermitools/abstracts/plotwidgets/abstract.html
9 Java 3DTM API Specification, http://www.javasoft.com/products/java-
media/3D/forDevelopers/j3dguide/j3dTOC.doc.html
10 JEdit is a pure Java editor, by Slava Pestov, http://www.gjt.org/~sp/jedit.html
11 JAS XML How To, http://www-sldnt.slac.stanford.edu/jas/Documentation/howto/online/default.shtml
12 jCVS is an open-source CVS client written in pure Java. JCVS servlet provides a way of making CVS
repositories browsable via the web. http://www.jcvs.org
13 jmk - Make in Java, http://www.ccs.neu.edu/home/ramsdell/make/edu/neu/ccs/jmk/jmk.html

