
A Lightweight Histogramming Interface Layer

C. Leggett1

Lawrence Berkeley National Laboratory, USA

Abstract

A troubling theme that pervades modern data analysis tools available in the world of high
energy and nuclear physics today, is that the user is usually constrained to a specific platform
and file format. PAW, ROOT, and HepTuple are all culprits in this regard. Furthermore,
modern tools such as ROOT, JAS and OpenScientist seek to blend the lines between data
analysis tools, and visualization tools, which often should be kept discrete, requiring the use
of large libraries.

We present a statistical data interface layer, which treats histograms and ntuples as dis-
crete, lightweight objects, allowing simple manipulations, and the ability to either save the
objects in traditional file formats such as HBOOK or ROOT, or to pass them on to applica-
tions. This functionality is provided by a class library, that can be linked to existing code with
minimal modifications, enabling the histogramming of virtually any data type.

Keywords: histogram,lightweight,template,C++

1 Introduction

Histograms have become one of the primary tools used in the analysis of data from HENP experi-
ments. They are so deeply entrenched in our mindset that it is difficult to conceive of an analysis
that does not make use of them. As the software developed to aid in the analysis of HENP data
has evolved over the decades, histogramming tools have become almost inextricably intermingled
in all the various levels of this software, from the point of data collection, through the analysis
modules, all the way to the visualization programmes. They have gained functionality and fea-
tures which transcend their underlying nature as purely statistical entities, to the point where they
are no longer suitable for certain applications.

It should be remembered that at a fundamental level, histograms are entities that hold statis-
tical information about a particular process. They should not be concerned with the thickness of
the line with which they are viewed, or the parameters of a fit. The act of accumulating and storing
statistical data is completely distinct from the act of manipulating it and from the act of visualizing
it. In the attempt to provide vast functionality, modern tools have tended to blur the lines between
these various actions, making it very difficult to use histograms as containers of purely statistical
information. Even with the use of shared libraries, linking in current histogramming packages can
result in very large memory footprints, which may overtax critical components.

Furthermore, many histogramming packages restrict the user to a single type of file format.
If that format is used, then the associated visualization tool must also be used. While some con-
version utilities do exist, they are often unidirectional, and don’t permit the user to freely chose
between competing formats.

We have designed a C++ class library that deals with histograms at their fundamental level.
These histograms can be booked, and filled, in both binned and unbinned variants, and minor

operations such as addition and subtraction have been provided. No attempt has been made to
provide a visualization tool, or complicated manipulation methods. The result is a very lightweight
histogram object with minimal overhead that can be passed between various modules, and with
the use of a provided file manager class, saved to and read from disk in a variety formats. This will
also allow the package to be used as interchange medium, to convert between various histogram
file formats.

2 Design Concerns

The two aspects of the design that we felt to be most essential were ease of use for the end user,
and minimal resource overhead. It should not be necessary for the user to write ten or twenty lines
of code just to create and fill a histogram. Sensible defaults are used for all parameters, though
they can be overridden as desired. This resulted in the implementation of an automatically binned
histogram, where the user does not even need to specify the range or bin sizes of the histogram
- they are computed on the fly after sufficient statistics have been collected. As well, in order to
minimize the size of the histogrammed object, the internal statistical information can be kept as
either floats or doubles, with the choice being made on a histogram by histogram basis.

One of the questions that we confronted in the design was the use of templates. Even today,
C++ compilers sometimes have trouble dealing with templates. However, it was felt that their
benefits outweighed their problems, and a decision was made to use them. This permitted us to
implement a very useful feature in the histogramming class - the ability to histogram complicated
objects, instead of merely simple types such as ints, floats, and doubles. In order to make use of
this feature, the user must supply a function that quantifies the object to be histogrammed.

3 Usage

Three standard types of histogram binning have been implemented: BINNED, UNBINNED and
AUTO.
� BINNED histograms can either be created with fixed bin widths, or an array of bin edges

can be supplied for variable width bins.
� UNBINNED histograms are intended for only small samples, and can be converted to

BINNED histograms at any time.
� AUTOmatically binned histograms start out as UNBINNED histograms, and are automat-

ically converted to BINNED histograms after sufficient statistics have been accumulated.
The conversion either creates fixed bin width histograms, or calculates the bin edges such
that the same number of entries fill each bin.

When the histograms are filled, a weight for each entry can also specified.

Various examples of creating histograms are shown below:

#include "Histogram.hpp"

Histogram hist1<>; // An automatically binned histogram

// of floats

Histogram hist2<>(100, -10., 20.); // 100 bins of fixed width between

// -10 and 20

Histogram hist3<float,double> (xvec); // variable bin widths supplied

// by xvec, statistics kept as

// doubles

// Automatically binned histogram of Muon objects, ordered according

// to the function (Muon.px() - Muon.py())

class Muon;

float MyQuantFunction(const Muon &M) {

return (M.px()-M.py());

}

Histogram hist4<Muon>;

hist4.SetQuantFunction(MyQuantFunction);

// Filling

hist.Fill(X); // fill histogram with X

hist.Fill(Y,.3); // fill with weight 0.3

Muon M;

hist.Fill(M); // fill with muon object, according to previously

// defined quantization function

// Various other methods

hist.Rebin(nch); // Rebin histogram with nch bins

hist.Resize(xlo, xhi, nch); // Resize histogram

X = hist.Contents(ichan); // Bin contents of channel ichan

C = hist.BinCenter(ichan); // Center of channel ichan

n = hist.Entries(); // Equivalent entries

m = hist.Overflow(); // Number of overflow entries

M = hist.Mean(); // Mean of histogram

R = hist.RMS(); // RMS of histogram

4 I/O

In order to completely separate the histogram object from the persistent storage format, the his-
togram object knows nothing about histogram file storage formats, such as ROOT or HBOOK.
Instead a histogram file manager is used to read in histograms from disk, and write them out in
various formats. This also minimizes the histogram class size, as no extraneous libraries need be
linked, reducing the required resources. Since the file manager can both read and write to all the
file formats, this also provides the ability to convert histograms between any two file formats.

At this time, only a limited selection of file format flavours has been implemented, namely
HBOOK, ROOT, and XDR. It is expected that this list will grow as time goes progresses to include
all the standard histogram formats.

5 Conclusions

With this histogramming package, we have completely separated the histogram object from all the
non-statistical aspects that have become inextricably intermingled in most other histogramming
tools. This provides a clear delineation between data gathering, analysis and visualization tools.
Not only does this permit computational resources to be minimized, but also facilitates the use of
any desired tool at each level of the analysis process - for example the user is no longer constrained
to use a particular visualization tool if its associated file format is chosen. This results in greater
modularization of the code, and allows for various components to be replaced as they become
obsolete or fall out of favour.

Since the file manager is distinct from the histogram layer, it can easily be amended as new
formats are developed. Likewise, accessory packages can be developed by users for specific needs,
such as specialized fitting or statistics routines. Since they are separate components, they would
only be linked in as needed, keeping the resource usage to a minimum.

