
C++ Code Analysis: an Open Architecture
for the Verification of Coding Rules

Alessandra Potrich and Paolo Tonella

ITC-irst, Centro per la Ricerca Scientifica e Tecnologica, Povo (Trento), Italy

Abstract

The analysis of C++ code is the basic building block of the collaboration between ITC-irst
and CERN, aimed at improving the quality of the software by exploiting the information that
can be automatically gathered from the code. The first objective of the collaboration is the
development of a coding rule check tool. Successive steps will include a reverse engineering
module and an intelligent refactoring tool. Since all planned applications, and possibly also
those not yet considered, share a common analysis bulk, particular attention was devoted to
the development of an open architecture for the analysis of C++ code.

In this paper the adopted architectural solutions are presented and discussed, highlighting
their generality, the possibilities of extension that they offer, and the way details could be
encapsulated within packages, so that a clear and sharp interface between the subsystems is
defined. The peculiarities of the C++ language are also described, together with the way they
were approached and the state of the current implementation.

Keywords: Code analysis, coding rules, reverse engineering, software architecture.

1 C++ analysis model

The model of the C++ language that was adopted for the development of the coding rule check
tool is very general and highly independent from this particular application. It is also possible to
adapt it for a different object oriented programming language. The choice of a general model is
the basis for the development of an architecture open to a variety of future applications.

HeaderFile

Function

ImplementationFile

Variable

MethodClass

0..*

0..* 0..*

0..*
0..*

0..* fields

localsglobals

Module

Figure 1: Simplified model of the C++ language.



Figure 1 shows a general view of the C++ analysis model, given in the Unified Modeling
Language (UML) notation [2]. A C++ program is made of several composing modules, each of
which is analyzed separately. A C++ Module may contain a set of global variables, a set of classes
and a set of functions. Such constituents are represented by the three aggregations respectively
with classes Variable, Class and Function. Since class Variable plays different roles in different
relations, its specific role (globals) with class Module is explicitly indicated. Each Module entity
can also be associated to the header file and implementation file actually containing the code
(classes HeaderFile and ImplementationFile).

A class contains fields and methods, respectively represented as aggregations with classes
Variable, playing the role fields, and Method. Each method has a set of local variables, instanti-
ated by objects of type Variable, with the role of locals.

2 Architecture

entities

syntax

analysis

rules

+CPPParser

Figure 2: Architecture of the coding rule checker.

Figure 2 depicts the architecture of the coding rule check tool in the formalism of UML.
It includes two main packages, analysis and rules. The first package in turn contains two nested
packages, syntax and entities1.

Package analysis is responsible for the analysis of an input C++ program, independently
of the application for which such analysis is performed. External packages relying on package
analysis can be developed for different applications. In this paper the coding rule check appli-
cation is discussed in detail, but future work will be devoted to additional applications like, e.g.,
a reverse engineering engine and a refactoring system. Package rules implements the first appli-
cation, aimed at checking if the source program was written according to a given set of coding
rules.

The package analysis is organized into two subpackages, syntax and entities. The most
important class exported by package syntax is the class CPPParser. Such class is automatically
generated by the public domain tool javacc, which converts an input grammar into a top down
parser, written in Java. The C++ grammar that was used as a starting point for this work is freely
distributed with javacc. It is based on the C++ grammar that can be found in [3].

The package entities contains the C++ analysis model described in the previous Section.
Method parse from class CPPParser is responsible for generating the objects that populate the
package entities, instantiating the classes of the language model. For example, each time a class
is encountered in the input code, a Class object is created and appended to the list of classes
contained in the Module under analysis. The two packages syntax and entities collaborate so as
to generate a network of objects that represents the input code in a form structured according to

1In the current implementation such grouping is only conceptual.



the chosen C++ model. The analysis package as a whole can only be queried on the entities that
were generated for a given input program. Each user of this package is only allowed to ask for
entities and for their properties, while their computation is performed by the parse method within
the syntax package.

The package rules contains a hierarchy of coding rules to be checked against an input
program. A Module object is obtained within the main method of this package by asking the
package syntax to parse the source code and populate the entities package. Then the check
method is activated for each coding rule, which has access to every entity and entity property
obtainable via a query to the entities package. The values of the retrieved properties are checked
for compliance with the coding rules. For example, a hypothetical coding rule may require that
the class name starts with a capital letter. The associated check method could iterate on the list of
classes contained in the Module entity, and query for the name attribute on each instance. Coding
rule violations are signalled on the standard output. The document with the coding conventions
of the Alice experiment at CERN, most of which are currently implemented in the tool under
development, is available at the site [1].

The adoption of this architecture for coding rule check provides a remarkable flexibility.
All rules relying on the properties of the entities in the C++ model can be encoded in the tool. In
turn the C++ model can be extended if additional properties need to be collected for the check of
a given coding rule.

Adding a new application package is extremely simple within the architecture described
above. If the new application requires an extension of the C++ analysis model, the related prop-
erties and classes have to be added, and the CPPParser needs to be adapted so as to generate the
related entities. These modifications should not interfere with the existing structure of the analysis
model; otherwise all user packages must be updated accordingly. The generality of the reference
C++ model adopted in this work should result in a pretty stable core structure. Then the new
user package accesses the entities generated by the parser with the simple query protocol that is
exported by the entities package.

3 Preprocessing

Each module under analysis has to be preprocessed before the parser can accept it. In fact, the
C++ language provides the possibility to define macro’s that are expanded in the code by the
preprocessor. Macro’s do not necessarily comply to the C++ syntax. They can contain any text
sequence, possibly parameterized, that is literally substituted with the associated macro definition.

The invocation of the C++ preprocessor requires that all included files (header files) be
provided, since they contain the macro definitions necessary to transform the source module into
the preprocessed one. Under most UNIX systems, the command to preprocess a source C++ file
is g++ -E. The preprocessed files contain information that has to be discarded before moving to
the parsing phase. This is the responsibility of the strip filter application.

The C++ preprocessor prepends all directly and indirectly included files to the source code
of the module under analysis. Therefore the preprocessed file contains several class definitions
and functions that are not part of the current module, being simply included by some header file.
The strip filter removes them from the preprocessed file. Moreover, the C++ preprocessor inserts
some flags in the code that are useful for the successive compilation step. If, for example, prepro-
cessor g++ -E is used, its output is expected to be successively parsed using the g++ compiler, to
generate machine code. Therefore the preprocessor inserts compilation directives specific for the
g++ compiler. Examples include flags extension , const, attribute . They are
all removed by the strip filter.



4 Language issues

Building a C++ analysis tool is a challenging task, because the C++ language has several pecu-
liarities that make it quite complex. In part this is due to its historical origin. It was conceived as
an evolution of the C language, able to incorporate the features of object oriented programming.
A strong requirement in its development was a total backward compatibility with C, so that a C++
compiler could handle C code as well. Consequently, C++ has all the characteristics of the C
language, plus several additional features, and the two can be intermixed in a program. In addition
to being not developed from scratch, C++ had also a controversial evolution in its more advanced
funtionalities, like exception handling and generic classes.

In order to deal with the complexity of the C++ language, it is important to distinguish
between the compilation perspective and the analysis perspective. The compiler checks the com-
pliance of the source code with the language, and then generates machine code accordingly. Its
input may either be an incorrect or a correct program, so that the associated grammar has to be
extremely restrictive and recognize only valid strings of the language. On the contrary, an ana-
lyzer may assume that the input program was successfully compiled without errors (otherwise it is
considered non analyzable). Its grammar can be consequently simplified. The kind of information
to be extracted is also different. The compiler needs to capture the statement level semantics, to
translate it into machine code, while an analyzer may be interested only in a higher level view.
Moreover the performances expected from a compiler are substantially superior to those expected
from an analyzer, which is executed less frequently and typically just once per session (while com-
pilers are re-executed after code modifications). All these considerations led to the choice of the
javacc based C++ grammar. It is not as restrictive as that of a compiler, but it is consequently
much more readable and understandable. It is also simpler to extract the needed information from
its productions. A prerequisite for its usage is that the input program compiles with no errors. The
parser generated by javacc is not particularly efficient, but the missing optimizations correspond
to a much clearer organization of its internal structure, so that it is simpler to modify its semantic
actions to compute the information of interest.

5 Conclusion

An open architecture for the analysis of C++ code was implemented in a code analysis package,
developed within the ITC-irst collaboration with CERN. It is exploited by the coding rule check
tool. To make analysis independent of the applications using its outcomes, a C++ language model
was developed, reflected in the organization of the analysis package.

The current version of the analysis package was checked on the code currently available
from the ALICE experiment. It allowed parsing and gathering information about all the software
(more than 100.000 lines of code). No parse error was reported by the analysis package, that
could extract the information in the C++ language model for all ALICE modules. The coding
rule check tool was also run on the code entities retrieved during analysis, resulting in a violation
report associated to each source module under analysis.

References

1 Alice Experiment: Coding Conventions,
http://AliSoft.cern.ch/offline/codingconv.html

2 J. Rumbaugh, I. Jacobson and G. Booch, “The Unified Modeling Language – Reference
Guide”, Addison-Wesley, 1998.

3 B. Stroustrup, “The C++ Programming Language (2nd edition)”, Addison-Wesley, 1992.


