
The Physical Design of the CDF
Simulation and Reconstruction

Software #A245

* Logical vs. Physical Design

* CDF’s Physical Design

* Rules and Guidelines

* Achievements

presented by Liz Sexton-Kennedy, Fermilab

CHEP 2000 Padova, Italy
 February 10, 2000

Logical vs. Physical Design

Liz Sexton-Kennedy
 10-Feb-2000

CHEP 2000
Physical Design of CDF

Logical design deals with language constructs
* Classes * Inheritance * Types of Data Members * their Visibility

Page 1

As systems grow larger attention to physical design
becomes critical.

Physical design addresses the issues involving

* Header and Source Files * File Placement * Directories
* Libraries * Compile and Link Time Dependencies Between Them

Classes can be physically coupled in varying degrees
➡Full Coupling

➡Name-Only Coupling

* the Header file of one class must include the header file of another

* a forward declaration is sufficient in the header file
* a forward declaration is sufficient in the source file

Different logical design choices can lead to different
levels of physical coupling.

Liz Sexton-Kennedy
 10-Feb-2000

The code system is large, with about 1.3 million lines
of code organized into 148 packages.

The packages are layered into a hierarchical tree of
dependencies and can be grouped into categories

It is critical that our developers be aware of these
categories so that they know how to structure their
code and avoid generating cyclic dependencies

Binary Packages

CDF’s Physical Design

Page 2

CHEP 2000
Physical Design of CDF

Algorithm Packages

Module Packages

Data Object Packages

Interface Packages

Infrastructure Packages

Standard Utilities and Services Packages

- intended to produce a binary like Production, 7

- can’t depend on each other, det. or obj., 24

- rigidly ordered dependencies, 33

- EDM and geometry objects, 17

- CDF compatible interfaces to externals, 12

- framework, EDM, and database 29

Zoom/CLHEP, ROOT, tcl, ect. 26
- generator,

Liz Sexton-Kennedy
 10-Feb-2000

The two most important rules for keeping the
physical design clean are :

* Packages may not cyclically depend on each other
* Use name-only dependencies wherever possible

The following rules are strictly followed:
* Keep Class data members private
* Avoid global data, and whenever possible avoid class static data
* Avoid using preprocessor macros in header files
* Use predictable include guards around the contents of header file
* Do not use "using" declarations in header files
* Enums, typedefs, constants should be defined within class scope
* Only classes and inline functions should be defined in header files
* Each header and source file pair should define one class
* If you fully depend on a class use it’s header file, not local def’n
* Follow our naming conventions for files and language components
* Do not use C-style casts
* Don’t use condition comp. clauses that change the size of an object
* Use of third party software must be approved
* Class documentation should appear in the header and must include
 the author’s name

Rules and Guidelines

Page 3

CHEP 2000
Physical Design of CDF

The LXR code browser had be an invaluable tool in
finding classes and fixing problems after they occur.

Liz Sexton-Kennedy
 10-Feb-2000

Achievements

CDF has been able to avoid cyclic package
dependencies. All packages fit into a fixed
hierarch that we can capture in a make file fragment.

Since they are hierarchical, packages need only
specify their immediate dependencies.

We are able to link all CDF offline applications
statically in one pass. The ordering is fixed, making
it much easier for end users to link their own jobs.

None of the above was true in Run I.

There are no classes that, when changed, will
trigger massive recompilation of the whole system.
There are some base classes which can affect a whole
category, such as AppModule or StorableObject,
but these are the exceptions.

Page 4

CHEP 2000
Physical Design of CDF

