
Benefits of Open Source Practices

Michael K. Johnson
Developer

Red Hat, Inc.

http://people.redhat.com/johnsonm/

Benefits of Open Source Practices

 I am a member of the Open Source community, and not the
HEP community. My knowledge of challenges facing the
HEP community are therefore second-hand.

 I discovered a great deal of disagreement about precisely
which challenges the HEP software community is facing.

 Not all of this talk will apply to everyone here.
 Use what is useful to you, ignore what is not.

Benefits of Open Source Practices
 Overview

 Current Problems/Challenges
 Suggested Improvements
 Observations
 Costs/Benefits Summary

Current Problems/Challenges

 Permanent forking (divergent development) is common
 Multiple maintainers duplicate work
 Improvements to one stream do not benefit others
 Frustrating

Current Problems/Challenges

 Limited "productization"
 Wasted time maintaining system code
 That could benefit many
 That others would help maintain if they had access
 Wasted effort
 Trying to help others install non-productized software

Current Problems/Challenges

 Design problems: Not designed to facilitate:
 Outside contributions
 Example: Mozilla when first released
 Transfer of maintenance
 New graduate students have long learning curve

Current Problems/Challenges

 Limited communication
 Developers are in closely-knit groups that are hard to join
 Competition inhibits communication and collaboration

Current Problems/Challenges

 Perception of false implications:
 Open Software
 Implies bazaar development model
 Implies lack of design and thus limited maintainability

Suggested Improvements
 Overview

 Societal

 Technical

 Trust is key
 These suggestions imply a community that builds trust
 Knowing who you trust implies also knowing who you do not trust

Suggested Improvements
 Societal

 Cooperation with competitors is possible
 Consider using or creating outside organization to help
 Unix vendors
 Usenix
 Open Group
 IETF

 Linux distribution builders
 Linux International
 Linux Standard Base (LSB)
 XFree86

Suggested Improvements
 Societal

 Cooperation with competitors is possible
 Example: Red Hat Linux
 Competitors use it as base of their distributions
 Red Hat takes advantage of this
 Red Hat Linux is the "trusted base"
 Recognition and (potential) market share
 Allows us to provide more interface stability
 We can re-include their changes and benefit from their experiments
 We can take advantage of our competitors’ mistakes
 Our competitors take advantage of this
 Try some modifications before we do
 When they make a good modification, they get reputation and market
 Users take advantage of this
 Competition enhances both our products and our competitors’
 Choice between distribution providers with different priorities

Suggested Improvements
 Societal

 Cooperation with competitors is possible
 Example: Red Hat Linux
 We still have proprietary processes
 We do not publish schedules ahead of time (avoiding vaporware)
 We do internal development when appropriate
 We don’t always publish code the instant we write it
 We don’t distribute binaries without source
 Except where legally constrained
 We prefer to develop in the open
 It is our default policy
 Otherwise we are just one more competitor for Microsoft to crush

Suggested Improvements
 Societal

 Cooperation with competitors is possible
 Make a default policy of cooperating
 Choose secrecy only because of well-developed arguments
 Ignore vague fears, life is too short...
 Choose secrecy for modules rather than projects when possible
 Has technical benefits as well (covered later)

 CERN has an explicit policy allowing GPL distribution
 US labs currently have no explicit policy

Suggested Improvements
 Societal

 Understand forking’s large long-term costs
 The ability to fork gives freedom from fear of coercion
 Taking advantage of that freedom has large costs
 Maintainer’s judgment is more important than
 Patching skill
 Time available to patch
 Maintainer’s job is primarily to reject patches
 Applying patches is a smaller secondary function
 Accepting patches does not imply applying them
 Maintainer may apply patches
 As-is
 With modifications
 By entirely re-writing
 Listen to Jeremy Allison’s talk next for more detail

Suggested Improvements
 Societal

 Maintain forks as patches, not as modified source
 Case study: RPM packages as maintained by Red Hat
 An RPM source package normally contains
 The original source package
 A set of patches to that source
 Shell script to patch and build

 RPM is a good tool for maintaining slightly forked versions
 Case study: procps raw forks nearly impossible to merge
 A maintainer ignored feedback for too long
 Other developers created several new versions

 Merging was more difficult than would have been worthwhile
 Nice features never made it into main version

Suggested Improvements
 Societal

 Build expectation that changes are sent to maintainer
 As GNU-style unified diffs (diff -u)
 Easiest diff format to apply by hand
 Using the same coding style as the modified code
 Including changes to documentation if applicable
 Separate functionality should be in separate patches
 Have an environment in which the changes can be discussed

Suggested Improvements
 Societal

 When you are not working with the "current development version"
 Try to remake your patches against the current development version
 Increases the probability that your patch will be accepted
 Large reduction in future upgrade costs for small investment now

Suggested Improvements
 Societal

 Use IT expertise
 Request software engineers from IT departments as a resource
 Consider these engineers to be collaborators
 Bring them in at the beginning of the process

Suggested Improvements
 Societal

 Use IT expertise
 Software engineers could assist with
 Formulating requirements
 Architecture, particularly modularization
 Toolmaking
 Productization and release management
 General software engineering practices
 Software engineers could reduce other demands on IT
 Reduced ongoing maintenance costs
 More efficient software
 Unified underlying architectures
 More potential resource sharing
 Enable reuse of both hardware and software

Suggested Improvements
 Societal

 Getting started right
 Consider extra startup resources as a bootstrap cost
 The first "deliverable" provides "plausible promise"
 Make sure everyone knows who the technical leader is
 Try to know what the non-leaders do
 Personal web pages can help with this in large projects

Suggested Improvements
 Societal

 Release early and often
 Clearly separate development and production releases by version number
 Make sure version numbers are unique
 Usually critical for maintainer’s ability to accept incoming patches
 Public CVS archives
 Generally are no substitute for frequent releases
 Except for some very small development/user communities
 But are better than nothing (and good for other things)

Suggested Improvements
 Societal

 Getting started right
 Communicate requirements documentation expectations
 Example: Mozilla rule
 If the job requires more than a day of work,
 Describe it to the developer newsgroup before starting

 Express coding standards explicitly for each project
 But not verbosely
 Borrow coding standards documents from successful projects
 Following coding standards
 Will speed up maintenance and coding
 Will make it easier for "casual" users to contribute small fixes
 Small fixes are often the ones that the authors never get around to

 See Bob Jones’ talk later for a good example of the process

Suggested Improvements
 Societal

 Getting started right
 Use networked CVS or other SHARED version control system
 Need more than maintainer having private CVS archive
 Even read-only access helps
 Third party patches can track maintainer’s version

 Avoid conflicts without too much overhead
 Overhead in making changes has an inordinately strong slowing effect

 Read-write access
 Requires more trust
 Explicitly specifies trust relationships

 See Bob Jones’ talk later for a working example

Suggested Improvements
 Societal

 Getting started right
 Encourage maintainability
 The more maintainable it is, the better outside contributions will be
 My latest favorite:
 Read The Practice of Programming, by Kernighan and Pike
 See http://cm.bell-labs.com/cm/cs/tpop/

 This all is important with any development model
 Just gets more important when you have more contributors

Suggested Improvements
 Societal

 Have an explicit productization process
 Production releases should be fully productized
 Development releases usually need less productization

Suggested Improvements
 Societal

 Have an explicit productization process
 Productization is NOT just packaging
 Productization includes
 Installability and uninstallability
 System integration
 Customization potential
 Testing
 Build process
 Built product
 Integration
 Consider distributing test cases, not just running them

 Analyze fix distribution requirements
 High distribution costs? Large formal testing requirements
 Low distribution costs? Smaller formal testing requirements
 Releasing early and often lowers distribution costs

Suggested Improvements
 Societal

 Have an explicit productization process
 Lacking productization resources?
 Call every release a development release
 Productization resources may show up later, perhaps in another group
 Productization has
 High cost
 Hidden, hard-to-measure, "negative" benefit:
 Fewer bugs experienced

Suggested Improvements
 Societal

 Encourage lurking, watching each others’ projects
 Learn from each others’ successes and failures
 Encourages reuse
 Software engineers and physicists will see different reuse potential
 Publish your work
 After you have something that works -- plausible promise
 After you no longer have immediate proprietary interest
 Publish more widely than you think makes sense
 When projects languish, pass the baton
 Or at least publish the fact that the project is stagnant
 Someone may pick up the baton later

Suggested Improvements
 Societal

 Consider publishing products (not programs) as a PUBLICATION
 Peer review still essential
 Set up organization to provide peer review of software publications?
 Poorly written code should disqualify equally as badly written language
 Establish formal conventions for citation of source code projects
 Publish source code with papers
 In journals
 In conference proceedings
 Particularly when reproducability and verifiability relies on the source

code

Suggested Improvements
 Technical

 Consider common Open Source standards
 automake/autoconf
 Existing coding standards (GNU, Linux -- just have one)
 Build on Open Source tools
 Don’t reinvent the wheel, and use free wheels
 Lowers the barriers to entry for new collaborators
 Gtk+, GNOME, Glade, Qt, KDE, libxml, gsl, Mesa, RPM, etc.

Suggested Improvements
 Technical

 Use modular software techniques
 Not just multiple C++ files...
 Shared libraries, run-time loaded libraries, separate programs
 Strong separation forces better design
 Can help cleanly separate proprietary from public code
 Some advantages of Open Source without giving secret research away
 Improves generalization to fit more institutional procedures

Suggested Improvements
 Technical

 Use modular software techniques
 Intrinsic benefits
 Interface stability
 Debugability
 Maintainability

Suggested Improvements
 Technical

 Use modular software techniques
 Case studies:
 Unix text filters
 Extreme modularization
 Historical success

 GIMP plugins
 Very high modularization
 Contributed strongly to meteoric success
 Simplicity encouraged third-party participation

 Linux kernel loadable modules
 Easy to keep personal work private
 Harder to distribute binary-only

 XFree86 4.0
 Developers prefer new design
 Much delayed by need for updates of old source base

Suggested Improvements
 Technical

 Build collaborative structures that encourage outside participation
 Technical structures with a primarily societal purpose
 Mailing lists
 Web: lxr, bonsai, mailing list archives, Zope/Squishdot, mod_virgule, wiki
 Usenet
 CVS
 IRC
 Find a set that matches the participants’ needs
 Archived discussion helps new folks get up to speed

Observations

 Open Source is no replacement for
 Maintenance
 Maintenance changes form, but needs to happen
 Management
 Strong leadership is essential for Open Source projects
 Leadership must be based on respect, not seniority
 Leadership must be technically sound
 Internal schedules and other needs may influence, but will not control, outside contributors

 Manpower
 No silver bullet
 Open Source gives flexibility to change the maintenance, management, and
manpower relationships
 Can sometimes give new life to dead projects
 Open Source does NOT imply giving up ownership or control
 That is one more tradeoff

Observations

 Projects work well when they have
 Well-defined goals
 Clearly-defined leadership
 Consistent code base
 Participants who respect each other
 Participants with varying talents

Costs/Benefits Summary
 Time

 Managing all these added processes takes time
 Maintenance help from more collaborators saves time
 Extra testing help from users finds bugs quicker
 Less likely later to experience result-invalidating bugs
 More reasonable growth in maintenance burden
 More efficient use of support staff
 Costs less per task
 Less frustrating and more satisfying for support staff
 Streamline deployment and acceptance
 Internal expansion eased by external testing and use
 Much more effective peer review from "lots of eyes"
 Even GEANT 3 has had random code readers fixing bugs

Costs/Benefits Summary
 Money

 Real productization requires test hardware
 Resources to support collaborative spaces
 More resources can be shared
 Internal to your organization
 With external organizations

Summary

 Most projects can benefit from taking advantage of some (more) of these
Open Source common practices. Most of those projects can benefit from
being entirely or partially Open Source. The costs to take advantage of Open
Source practices can be high, but the benefits are also considerable and for
many projects outweigh the costs.

Thanks to

 Rene Brun, Philippe Defert, Bob Jones, Arash Khodabandeh, Juergen
Knobloch, German Melia, Eric McIntosh, Les Robertson, Ben Segal, Jamie
Shiers, and Jes Sorenson at CERN for suggesting this talk and helping me
understand some of the challenges being experienced by various parts of the
HEP community.

Q&A

