Concept of a Software Trigger for an Experiment at TESLA

CONTENT

TESLA

Trigger Concept

Detector Layout

Trigger and Data Acquisition

Conclusion

TESLA

Options:

- 90 < √s < 800 GeV
- e⁺ e⁻, e⁻ e⁻, eγ, γγ
- e(TESLA) p(HERA)

	500 GeV	800 GeV	unit
repetition rate	5	3	Hz
bunches per pulse	2820	4500	
pulse length	950	850	$\mu \mathrm{sec}$
bunch spacing	337	189	nsec
luminosity	3.1 10 ³⁴	5.0 10 ³⁴	${\rm cm}^{-2}{\rm s}^{-1}$

TESLA

- Relatively long time between pulses (bunch trains): 199 ms
- Rather long time between bunches: 337 ns
- Rather long bunch trains (same order as detector readout time): 1ms

Trigger and DAQ Concept

AIM:

- fully efficient and flexible trigger
- deadtime free readout
 - ⇒ no data loss
- easy maintenance
- scalabilty
- exploit TESLA operation mode

CONCEPT:

- readout and store data of complete bunch train into pipeline
 - * no trigger interrupt
 - 1 ms active front-end pipeline
- perform zero suppression and/or data compression
 - manageable data volumes online
- apply software selection between pulses
 - full event data information of complete pulse available
 - store classified events according to (physics) needs

Trigger and DAQ Concept Overview

- 1 (or virtually 2) level trigger and DAQ system
 - deadtime free
 - no conventional L1
 - just one level of selection

Very similar to CMS architecture without L1

Trigger and DAQ Concept Advantages

- Flexibility
 - programmable to a large extent
 - full event information available
 - unforeseen (background or physics) rates easily accommodated
- Ease of maintenance (cost effectiveness)
 - off-the-shelf technology (memory, switches, processors, ...)
 - commonly used operating systems
 - high level programming languages
 - on-line computing resources usable for off-line applications

- Scalability
 - modular system
- Efficiency
 - all data is looked at
- Portability
 - off-line software in on-line environment

Trigger and DAQ Concept Implications

- Constraints on detector readout technologies
 - readout 1 ms continuously
 - digitising during pulse to keep occupancy small
 - no active gating for the TPC
 - *
- Pattern recognition for complete pulses
 - parallel processing of trains

- Feasibility depends on occupancy, in particular in inner VXD layer (see below)
- High bandwidth in front-end and event builder
 - few GB/s

Detector Concept

General concept:

- large detector with
 - gaseous main tracking chamber
 - hermetic highly granular calorimeter
 - high precision vertex detector

Physics and Background Rates

Physics

 $e^+e^- \rightarrow X$

- 0.0002/BX
- $e^+e^- \rightarrow e^+e^- X (\gamma \gamma)$
- 0.7/BX

Background

- neutrons 1000n/BX
- e⁺e⁻ pairs
 - ★ VXD inner layer 500 hits/BX
 - ★ ITC 100 hits/BX
 - ★ TPC 10 hits/BX
- photons (~1000γ/BX)
 - ★ TPC 40 tracks/BX

⇒ Background dominated!

Data Volume

Г				
	component	channels [10 ³]	hits per train [10 ⁶]	MB per train
	VXD	730 000	30	60
	FTD	20 000	2	4
	ITC	10 000	2	4
	TPC	720	17	170
	CAL	200	8	32
	MUON	200	1	4
	LAT	10	1	4
	total	800 000		278

~300 MB per bunch train

Comparison with other Experiments

6	experiment /	bunch	channel	L1 accept	event	L3 accept	data
	collider	separation	count	rate	building	rate	volume
		[ns]	[k]	[kHz]	[Mbit/s]	[MB/s]	[TB/y]
I	LEP	10000	150	_	10	0.2	2
H	H1/ZEUS	100	400	1	100	0.5	5
H	HERA-B	100	500	50	2000	2.5	25
F	BABAR	5	200	2	400	2.5	25
F	RHIC	_	250	_	_	20	250
C	COMPASS	_	250	_	_	35	350
Г	ΓΕVATRON	150	1000	25	5000	15	150
I	LHC	25	100000	100	500000	100	1000
J	ILC	3	100000	-	150000	100	1000
I	LC	350	100000	-	15000	15	150

Comparison with other Experiments

	present colliders	LHC	LC
event building	250 MB/s (HERA-B,)	50 GB/s	1.5 GB/s
event processing (reconstruction, filter)	1 s (H1, HERA-B,)	1 s	1 s
data volume	100 TB/y (Tevatron,)	1 PB/y	150 TB/y
processing units for L2/L3	few hundred boxes (HERA-B)	few thousand boxes	few hundred boxes

 Requirements in the ballpark of experiments which come into operation shorty

Conclusions

Base-line Concept

Deadtime-free software selection

- Considerable flexibility both in design of physics algorithms and in the choice of data used by these algorithms
 - rare physics and unfavourable event topologies can be kept
 - event data storage under control of event filter algorithms written according to needs of physics groups
 - more efficient trigger

- Event bulding rates are much smaller than at LHC and comparable to those at present experiments
 - feasible (almost) today
 - less demanding than for LHC
- expected development of computing technology very favourable
 - commodity hardware, high level programming languages and widely used OS will ease scalability and maintenance
 - merging on-line and off-line worlds results in more effective use of resources

⇒ Better, more efficient trigger!