Andreas Peters

University of Mainz –representing the NA48 collaboration

Parallel Session
Data Acquisition
and

Control Systems

ICHEP Padua 2000

Andreas Peters – University of Mainz – ICHEP 2000

- " Introduction: the NA48 experiment
- " data acquisition system overview
- event building and event worker model
- " PC slow control system
- Level 3 realtime reconstruction filter
- Level 3 filter reprocessing and steering
- " Summary and future projects

Andreas Peters – University of Mainz – ICHEP 2000

NA48

measurement of direct CP violation in the neutral kaon system

NA48 detector

Andreas Peters – University of Mainz – ICHEP 2000

DAQ system overview

09.02.2000 Page 04 a

Andreas Peters – University of Mainz – ICHEP 2000

DAQ system performance

	1997	1998	1999
trigger rate [2.3 s]	6–7 kHz	6.5–7.5 kHz	2 <mark>7–8.25 kH</mark> z
Event Building	hardware	software	software
Event Building rate	15 Mb/s	25 Mb/s	30.5 Mb/s
Online-Offline Link	32 Mb/s	32 Mb/s	110 Mb/s
Level 3+CDR	15 Mb/s	15/18 Mb/s	20 Mb/s
nom. data rate	15 Mb/s	17.5 Mb/s	18.5 Mb/s
raw data volume	17.5 Tb	68.5 Tb	100 Tb
taped decays	1.15 bill.	4.5 bill.	6.95 bill.
DAQ efficiency	86.5 %	93.0 %	99.0 %

09.02.2000 Page 04 b

Andreas Peters – University of Mainz – ICHEP 2000

NA48 event building and event worker model

- every14.4 s: 17k events 14kB/event
- -260 MByte/14.4s transferred
 to 8 selected event building PCs
 via Fast Ethernet switched network

Andreas Peters – University of Mainz – ICHEP 2000

PC slow control system & hot spare mechanism

- subdetector and event building PCs
 supervised by Control PC
- automatic power–cycle in case of a detected PC crash PC power and reset switched via 48 ch I/O card by a slow control PC
- event worker model treats four
 event building PCs as *hot spare* PCs –
 only 1/8 of one burst lost per
 event building PC crash

- subdetector PC reboot in <120 s

Andreas Peters – University of Mainz – ICHEP 2000

PC slow control system

Andreas Peters – University of Mainz – ICHEP 2000

Level 3 real—time Reconstruction Filter

- event decoding/reconstruction with best known calibrations: ~50 ms/event
- filter facilities in several output streams in raw and a physics data format

Offline PC farm for Level 3 filter

- -42 dual PentiumII PCs for Level 3 computing
- fourSun disk server machines with3.5 TByte SCSI disk arrays

Andreas Peters – University of Mainz – ICHEP 2000

Level 3 'two step' filtering

Andreas Peters – University of Mainz – ICHEP 2000

Level 3 steering

Andreas Peters – University of Mainz – ICHEP 2000

Summary and future projects

- NA48 experiment was using two Linux
 PC farms in 1999 for online and offline operation
- with the online system **100 Tbyte** *RAW* data processed in 125 days with **99%** efficiency
- high online efficiency was reached with
 'event worker model' and automatic PC
 slow control system
- Level 3 'two step' processing filter used for data reduction from 100 Tbyte to 3 Tbyte!
- planned upgrade to double the event rates for future rare decay programs