4)

Online Monitoring 1 'and Module
Maintenance 2 for CDF in the Upcoming

Fermilab Tevatron Run Il

B. Angelos , T. Arisawa, F. Hartmann, N. Ho, K.
lkado, S. Jones, K. Maeshima, R. Pordes, H. Stadie,
G. Veramendi, S. White, J. Yoh

presented by

Hans Wenzel

f CHEP

2000

1) http://www-b0.fnal.go v:8000/consumer/consumer .html

2) http://miscomp.fnal.go v/cdfdb/

_ /

4 N

1. Online Monitoring

Consumers use event data to monitor the
experiment in real-time. Consumer-Monitors are
AC++ modules which is the CDF offline
data-analysis-framework.

Things typically monitored by Consumer-Monitors
are: detector occupancies (dead/hot channels),
trigger rates and logic, luminosity, Level 3
reconstruction, physics objects, vertex positions,
etc...

Specifics of each of the Consumer-Monitors are
determined and written in collaboration with the

experts of each subsystem.

_ /

4 N

Think about what you want to achieve, what you
did or did not like about the previous system. Do
you want to improve an existing system or develop

something new.

® monitor the detector without interfering with

the data taking

e different consumer processes can run on

different machines
® ecach consumer receives only the data it needs

e the monitoring and the display processes are
separated
The number of displays is only limited by
network traffic and bandwidth

ko different consumers can be combined /

monitoring programs are written by the
experts. We just provide a framework and

coordination (needs backup by management).
common interface and maintainability

convenient access to archived data — you
can check at time of analysis. (Previous
system: print out in the control room or file

“somewhere”)

common Display program and error handler
allows to view the results of different
Consumers compare histograms and get to

the bottom of a problem (hopefully). (Previous

system: every monitor used different software)/

4)

Consumer Server, Consumers and Display Server

Level 3

(approx. 20 MB/sec)

Consumer Server/

Logger
1 1 static consumers
non-static
consumers Consumers,
Display Server &
example: Display/Viewer
ROOT based

example of Static Consumers:

DATA FLOW

DISPLAY
MEMORY MAP
AC++ Module W
CONSUMERS
SHARED
EVENTS CONSUMER-1 MEMORY

E====) CONSUMER-2

etc....

I

TRIG. TABLE
TEMPLATES
DATA BASE

£[> histos

tables
messages

trees

am<xomwm

fast socket
connection

>

T mMXOO0OWm

<> 0Dwnw— 0

/ Components of the

Consumer -Monitoring Framework

~

% [Run-Control]

)

{ CONSUMER-2 J

consumer
programs

error
handler

CONSUMER-1
[CONSUMER-N

CDF control room

...

e Consumers (monitor modules)

® Server e Display

\. Error Handler e State Manager

] ; =
config. via state
'talk to’ manager
shared shared shared shared
memory memory memory / ttreer memory

._Local or Remote
/// WWw

/

~

analyse and monitor the event data and check

the status of the experiment

store the results in shared memory (TMapFile)
can consist of different monitors

are written by the experts

we try to make the start as easy and painless

as possible!

/

Gr help for the monitor writers: \

® a script that automatically generates all

necessary files:

e well documented example monitors

e WWW pages with information about the

project and its programs:

k http://kcdfl.fnal.gov/ wenzel/consumer_new/

Makefile
monitor header and source

module to integrate the monitor(s) into the

CDF offline framework

build job to link the required modules (e.qg.
the interface which allows to connect to the

DAQ/Consumer Server) together

tcl script to run a test job

Consumer

—— Consumer

BaseMonitor.hh
CQIEMonitor.hh
DisplayServer.hh
FKbnklnputModule.hh

HistoDisplay.hh s
PQIEMonitor.hh
YMonModule.hh
link_Consumer.mk

ict
q, DisplayServer_linkdef.hh

; GNUmakefile How to create a consumer:

|

|

HistoDisplay_linkdef.hh

TRates Elem linkdef.hh

gc - = source cr_mon.csh MUMon CMUO
I BaseMonitor.cc

I CQIEMonitor.cc

I DisplayServer.cc

I FKbnkInputModule.cc
I GNUmakefile
|

|

|

|

HistoDisplay.cc
PQIEMonitor.cc
TRates Elem.cc Result:
YMonModule.cc

— Template MUMon

GNUmakefile GNUmakefile

Template.cc MUMon.cc

Template.tcl
TemplateModule.cc MUMon.tcl

|
|
|
|

TemplateModule.hh : MUMonModule.cc
|
|
|

XXXXMonitor.cc

XXX XMonitor.hh MUMonModule.nh
CMUOMonitor.cc

CMUOMonitor.hh

GNUmakefile

YMon.cc

Y Mon.tcl

— Executables
I' DisplayServerMain.cc
I GNUmakefile
I HistoDisplayMain.cc \

— Test
I GNUmakefile
: Producer.cc

—— cr_mon.csh

e takes the ROOT objects out of shared
memory and sends them to the clients
TMapFile, TSocket

e displays the status of each monitor job on a
WWW page

Eile List Tree Connection

e Ldr ¥ee Opinns napel Llasses

ENZ Edit ¥zw Jptoh [nopoct C©oasseo

MON CEMD Sum of Energy

Wedge Test Example Canvas
PEMD &1k uv N T e IW

IWW“' W“

Wedge Test Summary Canvas

= Sdmulafed Trocks

Fi sianas |

Filw Zzil Miww Cpliong nsiecl Zlogew

| 1R (W e d Feibadon I T3

(TS

Fes e

[
zztE
e

CDF Consumer Display

Input Stream
£ hemory Map File

& Other ROOT File

€ Socket Connection

Name of File / Socket Server:Fort

Ifspool.far\sawalestoDlsp\ayD\rfWedgeTestCanvas.root

Open

Location in List Tree

JsimswedgeTest

[Carveas
B-Caymon

[L0¥M_CEMD_Tow _foe
[CI¥M_CEMD_LPMT_Oce
[Z2VM_CEMD_RPMT_Oce
(ZIVM_CEMD_PMT_Symm
[Z¥M_CEMD_PMT_Var Symm
i

[AwHAD

CAFHAD

[CaFEMD

ey]

- [wedgeTest —

=+ 0thers =

W Update Automatically

Start
Pause
Bestart

Stop

dildds

Exit

[ERLE|

o e ko om
S
*
[

4 T2 4 1 b K 4

litred mean |

-~

We are evaluating the ZOOM ErrorLogger:
(part of the Run Il framework)
(http://www.fnal.gov/docs/working-

groups/fpcltf/fpcltf.html#ErrorLogger)

® shows and controls the status of each

consumer and server

® reports errors, communicates with

Run_Control

e parts are implemented in the server and

_

startup scripts

/

~

all components of the framework have been

tested

we successfully received data from the

Consumer Server

we are currently developing the full scale

software programs to be used in Run |l

various Consumer-Monitor programs are
being developed using the provided templates

and framework

we intend to use the programs during the

ongoing commissioning of the CDF Il detector.

/

documentation and tutorials

/ Problems and wishlist \

ROOT is a great tool. Would be nice to have good
Error handling, graphical GUI builder....

Much better tools (e.g. debugger) are really
needed for efficient C++.

We encountered some problems using TMapkFile:
Some of them were fixed by the ROOT team but

some remain.

® how to get the size and limit the size of the

memory region?

e the memory address to map to is not
communicated or checked — segmentation

faults and system crashes.

e no directory structure and inefficient use of

memory.

\o no selective update of objects in memory. /

4 N

2. Module Maintenance

The CDF Module database is based on ORACLE.
It is an extension of the main Computing Division
equipment database, MISCOMP-EQUIPDB. It

keeps track of:

e exact location, specific location within the CDF

readout system.
e serial number
® repair history
® prom versions

® engineering change orders

/Various guerying tools API's are available:
e Oracle reports
® cron jobs
e WWW: MISWEP a flexible PERL CGI script
e commercial tools: Crystal Reports

e CDF silicon project: custom java interface

The Collider Detector at Fermilab
CDF Module Database Reports

Welcome to the CDF Module Database Report page

Reports by Using MISWEB

Crystal Reports
Model Alterations
Asset Details
Opened CDF Jobs
Rack Configurations

QOracle Web Reports
CDF Users Access [evels

~

imer

— CDF Home Page EFNAL Discln

#Contact edf —miod —db@frad, gov with questions, suggestions, or problems.

_

4 N

We anticipate that once the run has started,
applications will make use of the various oracle
API’s to integrate information about modules into
experiment applications and reports. (Getting at
the source of a problem, optimising

maintenance...)

The success of such a database depends on its
acceptance by the people “in the field”. The efforts
now are concentrating on tuning the application to
deliver the most intuitive and easy to use update

and reporting interfaces.

_ /

4 N

We thank all the people who are contributing to
this work. Special thanks to the ROOT team, the
CDF online group, and the Fermilab Computing
Division. We also thank the community of ROOT
users who via the roottalk mailing list provide
answers and solutions to many problems. It's an
iInvaluable help to find the code of other successful
application on the web. The on-line monitoring

e.g. benefited fom the LHCDb -test-beam software.

_ /

