
Online Monitoring
�

and Module

Maintenance
�

for CDF in the Upcoming

Fermilab Tevatron Run II

B. Ang elos , T. Arisa wa, F. Hartmann, N. Ho, K.

Ikado, S. Jones, K. Maeshima, R. Pordes, H. Stadie ,

G. Veramendi, S. White , J. Yoh

presented by

Hans Wenzel

1) http://www-b0.fnal.go v:8000/consumer/consumer .html

2) http://miscomp.fnal.go v/cdfdb/

1. Online Monitoring
Definition of a Consumer -Monitor

Consumers use event data to monitor the

experiment in real-time. Consumer-Monitors are

AC++ modules which is the CDF offline

data-analysis-framework.

Things typically monitored by Consumer-Monitors

are: detector occupancies (dead/hot channels),

trigger rates and logic, luminosity, Level 3

reconstruction, physics objects, vertex positions,

etc...

Specifics of each of the Consumer-Monitors are

determined and written in collaboration with the

experts of each subsystem.

Desired features of the

Consumer -Monitoring Framework

Think about what you want to achieve, what you

did or did not like about the previous system. Do

you want to improve an existing system or develop

something new.

� monitor the detector without interfering with

the data taking

� different consumer processes can run on

different machines

� each consumer receives only the data it needs

� the monitoring and the display processes are

separated

The number of displays is only limited by

network traffic and bandwidth

� different consumers can be combined

Desired features of the

Consumer -Monitoring Framework

(cont.)

� monitoring programs are written by the

experts. We just provide a framework and

coordination (needs backup by management).

� common interface and maintainability

� convenient access to archived data � you

can check at time of analysis. (Previous

system: print out in the control room or file

“somewhere”)

� common Display program and error handler

allows to view the results of different

Consumers compare histograms and get to

the bottom of a problem (hopefully). (Previous

system: every monitor used different software)

Consumer Server, Consumers and Display Server

Level 3

Logger
Consumer Server/

FCC
DATA to

ROOT based

Display Server &

(approx. 20 MB/sec)

non-static
consumers

static consumers

Consumers,

Display/Viewer�����
	���������� ��������������� ��"!

�����
	�����$#&%(')�*�
����+-,.#��/��0�	1��23���
������4657#����8�8#�2:9;')�8�/<���=�9��32:� </<>��2?	(#����8�8#�2@96���8+64A4

AC++ Module

S
O
C
K
E
T

D

S
P
L
A
Y

I
S
E
R
V
E
R

SHARED
MEMORY

CONSUMERS

EVENTS

DISPLAY

BDCFEGEIHDBDJLK CFEM NDO J O CGBQP�H8J

MEMORY MAP

TRIG. TABLE
TEMPLATES
DATA BASE

J NQRGS H OT@H ODODNDU H O
V K O J C O

etc....

CONSUMER-1
CONSUMER-2

JLW HDH O

LOCAL ANYWHERE

DATA FLOW

Components of the

Consumer -Monitoring Framework

WWW

File/CS
Events

shared
memory

shared
memory

shared
memory

shared
memory

browser browser browser browser browser

...........

..............

se
rv

er

se
rv

er

.......

...........

C
O

N
S

U
M

E
R

-1

C
O

N
S

U
M

E
R

-2

C
O

N
S

U
M

E
R

-3

C
O

N
S

U
M

E
R

-N

consumer
programs

config. via
’talk to’

Run-Control

state
manager

error
handler

Local or Remote

CDF control room

� Consumers (monitor modules)

� Server � Display

� Error Handler � State Manager

I. The Consumer s

� analyse and monitor the event data and check

the status of the experiment

� store the results in shared memory (TMapFile)

� can consist of different monitors

� are written by the experts

� we try to make the start as easy and painless

as possible!

Our help for the monitor writers:

� a script that automatically generates all

necessary files:

– Makefile

– monitor header and source

– module to integrate the monitor(s) into the

CDF offline framework

– build job to link the required modules (e.g.

the interface which allows to connect to the

DAQ/Consumer Server) together

– tcl script to run a test job

� well documented example monitors

� WWW pages with information about the

project and its programs:

http://kcdf1.fnal.gov/ wenzel/consumer new

Physical Design of the Consumer

Package
Consumer

Consumer
BaseMonitor.hh
CQIEMonitor.hh
DisplayServer.hh
FKbnkInputModule.hh

PQIEMonitor.hh
YMonModule.hh
link_Consumer.mk

HistoDisplay.hh

dict

GNUmakefile
DisplayServer_linkdef.hh

HistoDisplay_linkdef.hh
TRates_Elem_linkdef.hh

src
BaseMonitor.cc
CQIEMonitor.cc
DisplayServer.cc
FKbnkInputModule.cc
GNUmakefile
HistoDisplay.cc
PQIEMonitor.cc
TRates_Elem.cc
YMonModule.cc

Template
GNUmakefile
Template.cc
Template.tcl
TemplateModule.cc
TemplateModule.hh
XXXXMonitor.cc
XXXXMonitor.hh

YMon
GNUmakefile
YMon.cc
YMon.tcl

Executables
DisplayServerMain.cc
GNUmakefile
HistoDisplayMain.cc

Test
GNUmakefile
Producer.cc

cr_mon.csh

How to create a consumer:

source cr_mon.csh MUMon CMUO

Result:

GNUmakefile

CMUOMonitor.hh
CMUOMonitor.cc
MUMonModule.hh

MUMonModule.cc
MUMon.tcl

MUMon.cc

MUMon

II. The Server

� takes the ROOT objects out of shared

memory and sends them to the clients

TMapFile, TSocket

� displays the status of each monitor job on a

WWW page

III. The Displa y

IV. The Error Handler

We are evaluating the ZOOM ErrorLogger:

(part of the Run II framework)

(http://www.fnal.gov/docs/working-

groups/fpcltf/fpcltf.html#ErrorLogger)

V. The State Manager

� shows and controls the status of each

consumer and server

� reports errors, communicates with

Run Control

� parts are implemented in the server and

startup scripts

Current Status

� all components of the framework have been

tested

� we successfully received data from the

Consumer Server

� we are currently developing the full scale

software programs to be used in Run II

� various Consumer-Monitor programs are

being developed using the provided templates

and framework

� we intend to use the programs during the

ongoing commissioning of the CDF II detector.

� documentation and tutorials

Problems and wishlist

ROOT is a great tool. Would be nice to have good

Error handling, graphical GUI builder....

Much better tools (e.g. debugger) are really

needed for efficient C++.

We encountered some problems using TMapFile:

Some of them were fixed by the ROOT team but

some remain.

� how to get the size and limit the size of the

memory region?

� the memory address to map to is not

communicated or checked � segmentation

faults and system crashes.

� no directory structure and inefficient use of

memory.

� no selective update of objects in memory.

2. Module Maintenance
The CDF Module database is based on ORACLE.

It is an extension of the main Computing Division

equipment database, MISCOMP-EQUIPDB. It

keeps track of:

� exact location, specific location within the CDF

readout system.

� serial number

� repair history

� prom versions

� engineering change orders

Various querying tools API’s are available:

� Oracle reports

� cron jobs

� WWW: MISWEP a flexible PERL CGI script

� commercial tools: Crystal Reports

� CDF silicon project: custom java interface

Priorities

We anticipate that once the run has started,

applications will make use of the various oracle

API’s to integrate information about modules into

experiment applications and reports. (Getting at

the source of a problem, optimising

maintenance...)

The success of such a database depends on its

acceptance by the people “in the field”. The efforts

now are concentrating on tuning the application to

deliver the most intuitive and easy to use update

and reporting interfaces.

Ackno wledg ements

We thank all the people who are contributing to

this work. Special thanks to the ROOT team, the

CDF online group, and the Fermilab Computing

Division. We also thank the community of ROOT

users who via the roottalk mailing list provide

answers and solutions to many problems. It’s an

invaluable help to find the code of other successful

application on the web. The on-line monitoring

e.g. benefited fom the LHCb -test-beam software.

