
Scalable Parallel Implementation of GEANT4
Using Commodity Hardware and Task

Oriented Parallel C

George Alverson, Luis Anchordoqui, Gene Cooperman,
Victor Grinberg, Thomas McCauley, Steve Reucroft,

Edgar Salazar and John Swain

Northeastern University
Boston, MA, USA

Features of TOP-C model

Primary Goals:

� Ease-of-programming (small number of primitives, embedded in

familiar language, ports to C, LISP, GAP, Java, etc.)

� Good latency tolerance (for commodity hardware)

Secondary Goals:

� Re-use of \legacy" sequential code

� Simple, task-oriented programmer's model

� Natural load balancing

� Robustness (in presence of very slow or dead processes)

� Dynamic attachment of new processors

� Checkpointing

� Meta-computing on Web

� Runs on top of message-passing or shared memory model (same

application code, linked with di�erent library)

� Small model (small library of code | easily maintained and

modi�ed)

Tracking a Shower
 Through the Tank

Three progressively closer views
show the development of the
shower of photons in an Auger
detector tank produced by a 10
MeV electron (incident from the
left).

The Tank
(Surface Detector Station)

● 1.2m in height
● 1.8m in radius
● water filled
● triple phototube readout on top
● solar-powered radio telemetry
● 1500 tanks per location

10 MeV electron incident from top

Cherenkov photons (in green) exit or
reflect from the sides of the gray
(transparent) tank walls.

Shower Origination

gamma e- mu- proton neutron

Cut in range 1 mm 1 mm 1 mm 1 mm 1 mm

Cut in energy
 Air 990 eV 990 eV 48.4 keV 83.2 keV 990 eV
 Water 2.9 keV 347 keV 3.39 MeV 8.95 MeV 990 eV

Propagation Parameters

Life Cycle of A Task

MASTER SLAVE

#
"

!GenerateTaskInput()

#
"

!DoTask(input)

#
"

!

CheckTaskResult

(input, output)

#
"

!UpdateSharedData(input, output)

PPPPPPPPPPq

input

�
�
�

�
�
��+

output

�
�
�
�
��3

(if action == REDO)

PPPPPPPPPPq

(if action == UPDATE)

TOP-C Programmer's Model

DISTRIBUTED FREE:
ftp://ftp.ccs.neu.edu/pub/people/gene/topc/

Concept 1: The Task

� Virtual star topology: single master process, many slave pro-

cesses

� Task executed on a single slave process: never interrupted

� For a given task input and a given state of shared data, task

produces a unique task output, independently of which slave

process was invoked

Concept 2: The Shared Data

� De�nition: Global, shared data, readable by all routines in all

processes, but writable only by UpdateSharedData()

� Lazy updates: UpdateSharedData() called by TOP-C on a

given slave after current task is complete and before next task

Concept 3: The Action

A task results in one of four actions:

� NO ACTION: /* do nothing */;

� UPDATE: call UpdateSharedData(input, output);

[on master and all slaves]

� REDO: Ask same slave to repeat calculation

(executed only after all pending calls to UpdateSharedData)

(Slave may have cached information from �rst computation)

� CONTINUATION: ;

Invocation of TOP-C

� Write application source code including:

1. initialization of values of global variables (including shared

data);

2. de�nition of four TOP-C application functions: GenerateTaskInput,

DoTask, CheckTaskResult, UpdateSharedData;

3. invocation of parallelism:

MasterSlave(GenerateTaskInput, DoTask, CheckTaskResult,

UpdateSharedData);

� Build application binary:

1. Compile application source using TOP-C include �le; and

2. Link application object �le using TOP-C library.

� NOTE: same source code can be re-compiled for sequential,

message-passing, SMP, DSM, and other architectures

� Write procgroup �le on master specifying:

1. number of slave processes;

2. which computer to use (hostname or Internet number) for

each slave; and

3. location of binary on slave computer

� Execute binary on master:

This automatically invokes MasterSlave() in TOP-C library,

which invokes MPI or other parallel library to start slave pro-

cesses

� NOTE: Source code uses SPMD style: Master and all slave

process execute identical code until they reach MasterSlave()

CheckTaskResult():
The Heart of a Parallel Algorithm

TOPC_ACTION CheckTaskResult(void *input, void *output)

{ if (output == NULL) return NO_ACTION;

if (! is_up_to_date()) return REDO;

return UPDATE; }

NOTE: There are only two library functions for the parallel pro-

grammer to know about: master slave() and is up to date()

� Strategy 1: De�ne task so most outputs result in NO ACTION

1. TRIVIAL PARALLELISM: collect results in private variable

of master; Report results at end of execution

2. SEARCH: Most search branches fail, eliminate those cases

� Strategy 2:

1. De�ne DoTask() to cache partial results in private global

variable, partsOfTask, in slave process.

2. De�ne UpdateSharedData() to record in private global

variable, partsOfSharedDataModified, which parts of the

shared data were modi�ed.

3. Modify DoTask() to recognize when called in REDO action,

and to use those portions of partsOfTask not a�ected by

the changed shared data, as recorded in

partsOfShareDatayModified.

� Strategy 3: Collect task outputs from multiple slaves, and merge

on master. Then modify task input and output on master before

calling UpdateSharedData()

Parallelizing Legacy Software: Geant4 Experience

100,000 lines of C++ code with STL for simulating particle showers.

1. The use of .icc (include) �les to isolate our code from the

original Geant4 code.

2. Collecting the code of the inner loop in a separate routine, DoTask(),

whose input was a primary particl track, and whose output was

the primary and its secondary particle.

3. Marhsalling and unmarshalling the C++ objects for particle

tracks. (gdb, a symbolic debugger, and etags, an emacs-compatible

code browser used to inspect internals)

4. Adding TOPC init(), TOPC submit task input(), etc.; Tested

on marshalled particle tracks being sent across the network.

5. Finally, adding CheckTaskResult(), which inspected the task

output, and added the secondary tracks to the Geant4 stack, for

later processing by other slave processes.

Lessons from Parallelizing Geant4

1. Parallelization/Distributed computing is easier when application

writers provide marshalling routines

2. TOP-C is economical: Geant4 stack, with its potentially large

space requirements, ersides only on master

3. Network latency (approx. 10 ms { 100 ms) is an issue. However,

TOP-C allows tasks to be bundled (agglomerated) together to

amortize network latency over fewer messages.

4. Porting to shared memory under TOP-C is trival: replace dis-

tributed memory TOP-C library by shared memory TOP-C li-

brary

DISTRIBUTED FREE:
ftp://ftp.ccs.neu.edu/pub/people/gene/topc/

