
NetLogger

Using NetLogger for Distributed
Systems Performance Analysis of the

BaBar Data Analysis System

Data Intensive Distributed Computing Group
Lawrence Berkeley National Laboratory

Brian L. Tierney
Dan Gunter

NetLogger

Outline

• NetLogger Overview

• NetLogger Components

• Results from BaBar analysis

NetLogger

Overview

• The Problem
– When building distributed systems, we often

observe unexpectedly low performance
• the reasons for which are usually not obvious

– The bottlenecks can be in any of the following
components:

• the applications
• the operating systems
• the disks or network adapters on either the sending or

receiving host
• the network switches and routers, and so on

• The Solution:
• Highly instrumented systems with precision timing

information and analysis tools

NetLogger

Bottleneck Analysis

• Distributed system users and developers often
assume the problem is network congestion
– This is often not true

• In our experience tuning distributed applications,
performance problems are due to:
– network problems: 40%
– host problems: 20%
– application design problems/bugs: 40%

• 50% client , 50% server

• Therefore it is equally important to instrument the
applications

NetLogger

NetLogger Toolkit

• We have developed the NetLogger Toolkit, which
includes:

– tools to make it easy for distributed applications
to log interesting events at every critical point

– tools for host and network monitoring

• The approach is novel in that it combines network,
host, and application-level monitoring to provide a
complete view of the entire system.

• This has proven invaluable for:

– isolating and correcting performance bottlenecks

– debugging distributed applications

NetLogger

Why “NetLogger”?

• The name “NetLogger” is somewhat misleading
– Should really be called: “Distributed

Application, Host, and Network Logger”

• “NetLogger” was a catchy name that stuck

NetLogger

NetLogger Components

• NetLogger Toolkit contains the following
components:
– NetLogger message format
– NetLogger client library
– NetLogger visualization tools
– NetLogger host/network monitoring tools

• Additional critical component for distributed
applications:
– NTP (Network Time Protocol) or GPS host clock is

required to synchronize the clocks of all systems

NetLogger

NetLogger Message Format

• We are using the IETF draft standard Universal Logger
Message (ULM) format:

• a list of “field=value” pairs
• required fields: DATE, HOST, PROG; followed by optional

user defined fields
• http://www.ietf.org/internet-drafts/draft-abela-ulm-05.txt

• Sample ULM event
DATE=19980430133038.055784 HOST=foo.lbl.gov
PROG=testprog LVL=Usage NL.EVNT=SEND_DATA
SEND.SZ=49332

• We are currently adding XML support as well

NetLogger

NetLogger API

• NetLogger Toolkit includes application libraries for
generating NetLogger messages
– Can send log messages to:

• file
• host/port (netlogd)
• syslogd
• memory, then one of the above

• C, C++, Java, Fortran, Perl, and Python APIs are
currently supported

NetLogger

NetLogger API

• Only 6 simple calls:
– NetLoggerOpen()

• create NetLogger handle

– NetLoggerWrite()
• get timestamp, build NetLogger message, send to destination

– NetLoggerGTWrite()
• must pass in results of Unix gettimeofday() call

– NetLoggerFlush()
• flush any buffered message to destination

– NetLoggerSetLevel()
• set ULM severity level

– NetLoggerClose()
• destroy NetLogger handle

NetLogger

Sample NetLogger Use

 lp = NetLoggerOpen(method, progname, NULL,
hostname, NL_PORT);

while (!done)
{

 NetLoggerWrite(lp, "EVENT_START",
"TEST.SIZE=%d", size);

 /* perform the task to be monitored */
 done = do_something(data, size);

 NetLoggerWrite(lp, "EVENT_END");
}
NetLoggerClose(lp);

NetLogger

NetLogger Host/Network Tools

• Wrapped UNIX network and OS monitoring tools to log
“interesting” events using the same log format
– netstat (TCP retransmissions, etc.)
– vmstat (system load, available memory, etc.)
– iostat (disk activity)
– ping

• These tools have been wrapped with Perl or Java
programs which:
– parse the output of the system utility
– build NetLogger messages containing the results

NetLogger

NetLogger Event “Life Lines”

NetLogger

Event ID

• In order to associate a group of events into a
“lifeline”, you must assign an event ID to each
NetLogger event

• Sample Event Ids
– file name
– block ID
– frame ID
– user name
– host name
– etc.

NetLogger

NetLogger Visualization Tools

• Exploratory, interactive analysis of the log data has
proven to be the most important means of identifying
problems

– this is provided by nlv (NetLogger Visualization)

• nlv functionality:
– can display several types of NetLogger events at

once
– user configurable: which events to plot, and the

type of plot to draw (lifeline, load-line, or point)
– play, pause, rewind, slow motion, zoom in/out, and

so on
– nlv can be run post-mortem or in real-time

• real-time mode done by reading the output of netlogd as it
is being written

NetLogger

NLV Example

NetLogger

What to Instrument in Your
Application

• You’ll probably want to add a NetLogger event to the
following places in your distributed application:
– before and after all disk I/O
– before and after all network I/O
– entering and leaving each distributed component
– before and after any significant computation

• e.g.: an FFT operation

– before and after any significant graphics call
• e.g.: certain CPU intensive OpenGL calls

• This is usually an iterative process
– add more NetLogger events as you zero in on the

bottlenecks

NetLogger

Results

NetLogger

Results: 2 nodes with Objectivity
Error

NetLogger

Results: dblock Example

NetLogger

Results: Possible Deadlock

NetLogger

 Getting NetLogger

• Source code and binaries are available at:
– http://www-didc.lbl.gov/NetLogger

• Client libraries run on all Unix platforms

• Solaris, Linux, and Irix versions of nlv are
currently supported

