Visualizing ATLAS High-Luminosity Events

Charles Loomis Univ. of California, Santa Cruz

Hans Drevermann European Center for Particle Physics (CERN)

Outline

Why visualize event?

- Check reconstruction algorithms
 - now against simulation
 - later against data
- check detector at startup
- check events in analysis
 - new physics candidates
 - pathological candidates
 - unknown (forgotten) bkgs.

ATLANTIS

- Descends from ALEPH's event display DALI
- Emphasizes understanding physics

Tools to tackle complexity:

- ✤ Using V-Plot
- Finding z-vertex
- Filtering hits

Tracking Comparisions Conclusions & Future Work

High-Multiplicity of InnerDetector

HZ Event Without Pileup

HZ Event With Pileup

ATLAS

Tool 1: V-Plot

Plot two points for every spacepoint:

- * center two points at (ϕ, θ)
- distance proportional to the distance to edge of detector

Visually from V-plot:

* ϕ , θ , pt, charge, d0, and z0

Tool 2: Finding the Z-Vertex

In ρ vs. z plane:

- form lines from all doublet or triplet
 (φ vs. ρ) combinations
- histogram of z-intercept
- choose z-vertex as the bin with the most entries

Speed:

- Doublet and triplet versions
 - better result from triplet version
 - but, 2.5× longer execution time
- tricks used to optimize method
- could obtain vertex from elsewhere
 - e.g. pp→HZ→bbµµ could get vertex from muons

Tool 3: Filtering Algorithm

- Bin spacepts. in ϕ vs. η (180 × 1000 bins)
- Count number of DIFFERENT LAYERS in each bin.
- Cut spacepts. In bins with fewer than 4 layers firing
- Group the spacepoints by clustering neighboring bins
 - helps to associate hits in crowded regions (jets)

				•																				
	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1					1 1						
						2	2	3	3	3	3	1	1	1	1	1	1	2	2	1	1	1	1	
						2 3	∠ 3	4	4	4	3 4	1	1	1	1	1	$^{\perp}$	2	2 2	1	1	1	1	
<u></u>						3	3	4	1	4	4	1	1	1	1	1	1	2	2	1	1	1	1	
) deg						6 6	6 6	6 6	6 6	6 6	6 6	1 1	1 1	2 2	2 2	2 2	2 2	1 1	1 1			1 1	1 1	1 1
190				2 2	2 2	5 5	5 5	5 5	ľ	4 4	4 4	1 1	1 1] 1	1 1	1 1	1 1					1 1	1 1	2
				2 2	2 2	4	4 4	4 4	4 4	3 3	3 3	2 2	2 2	3 3	3 3	3 3	3 3	1 1	1 1			1 1	1 1	3 3
				2 2	2 2	2 2	2 2	2 2	2 2			1 1	1 1	4 4	4 ,∕	5	5 5	4 4	4 4	1 1	1 1	1 1	1 1	4 4
	1 1	1 1	1 1	1 1	1 1							1 1	1 1	7 7	7 7	7	, 7	6 6	6 6	1 1	1 1	1 1	1 1	3 3
	1 1	6 6	-; 6	7 7	7 7	7 7	7 7	1 1	1 1			1 1	1 1	6 6	6 6	7	7 7	6 6	6 6	2 2	2 2	2 2	2 2	2 2
φ	3 3	6 6	6 6	7	7	7	7 7	1 1	1 1	1 1	1 1	1 1	1 1	4 4	4 4	4 4	4 4	4 4	4 4	2 2	2	1 1	1 1	1 1
	3 3	6 6	0 6	7 7	7 7	7 7	7 7	5 5	5 5	5 5	5 5	4	4 4	2 2	2 2	2 2	2 2	3 3	3 3	2 2	2 2	3 3	3 3	2 2
leg	3 3	3 3	3 3	3 3	3 3	3 3	3 3	7 7	7 7	7	7 7	6 6	6 6	3 3	3 3	1 1	1 1	2 2	2 2	1	1 1	2 2	2 2	3 3
170 d	1 1	3 3	3 3	<u>}</u> 2	2 2	3 3	3 3	7 7	7 7		7 7	6 6	6 6	2 2	2 2	2 2	2 2	3 3	3 3	2 2	2 2	3 3	3 3	2 2
	2 2	4 4	4 4	2 ∠	2 2	2 2	2 2	6 6	6 6	6 6	6 6	4 4	4 4	2 2	2 2	2 2	2 2	2 2	2 2	2 2	2 2	2 2	2 2	1 1
	2 2	3 3	3 3	1 1	1 1	1 1	1 1					1 1	1 1	1 1	1	2 2	2 2	2 2	2 2	2 2	2 2	1 1	1 1	1 1
	1 1	4 4	4 4	3 3	3 3	3 3	3 3					1 1	1 1	1 1	1 1	1 1	1 1							1 1
	1	7	7	6	6	6	6	1	1	1	1	2	2	2	2	1	1							1
	-35 deg											-34 deg <u>θ</u>												

V–Plot Without & With Filter

22767 unfiltered

ATLANTIS A6

A

Performance of Hit Filter

Performs well on Higgs event

- Lose low-pt tracks
 - binning in φ is an implicit cut on transverse momentum
- Lose tracks from other z-vertices
 - θ binning cuts on z-position
- Can tune parameters to change performance.
 - ✤ e.g. Filter for low-pt tracks

Comparison of iPatRec and Filter

Zoomed View of Jet 1

ATLAS

ATLANTIS_A6

Zoomed View of Jet 2

ATLAS

ATLANTIS_A6

Conclusions

Events are too crowded to understand with traditional views, BUT...

Tools make visualization possible:

- ✤ V-plot allows:
 - quick visual check of tracking performance
 - allows checks to be done WITHOUT Monte Carlo truth information!
- Z-finding algorithm works
- Hit filtering works and helps to group associated spacepts.

Future Work

Get other subdetector data

- Transition Radiation Tracker
- Calorimeters
- Muons

&

Solve technical issues

θ dependence of SCT spacepts.

Improve method in endcaps

Use Java rather than FORTRAN:

- graphics speed adequate
- port Z–finder
- port hit filter