
ISOcxx: The C++ Portability Package

Walter E. Brown

Fermi National Accelerator Laboratory, Batavia, Illinois, USA

Abstract
The level of C++ compilers’ adherence to the ISO C++ standard varies considerably from

compiler to compiler. This variability has significantly hindered users’ attempts at standard-
compliant C++ coding practices. ISOcxx is a software package that addresses such deficient
aspects of users’ C++ development environments. This portability package:

� probes an environment to identify areas of non-compliance (“defects”) with the stan-
dard, and

� supplies, where possible, “compliance code” so as to mitigate (“cure”) the ill effects
of the detected defects.

Each defect typically results from a feature that is required by the ISO C ++ standard, but
that a particular environment omits entirely, provides only incompletely, matches to an out-
dated draft of the standard, or otherwise incorrectly supports.

A cure is applicable if test programs demonstrating the corresponding defect can be suc-
cessfully compiled and run when the compliance code is incorporated. Where no compliance
code is available, client code is nonetheless made aware of the defect and can thus avoid the
offending construct.

Thus, this package allows client code to be maximally compliant with the international C ++
standard, yet still be acceptable to many otherwise-defective environments.

Keywords: ISOcxx, C++, portability, programming, portable programming

1 Project Overview

The C++ Portability Project at Fermilab grew out of informal discussions in November 1998, “to
standardize C++ library and language feature access across multiple platform/compiler combina-
tions.” Given the abbreviation ISOcxx (International Standards Organization C++), the project’s
formal goals are to:

� document known defects of C++ development environments for supported Run II plat-
forms;

� provide, to the extent possible, C++ standard-compliant fixes and workarounds that
serve as cures for known defects’ consequences;

� provide a framework for testing known defects and for testing compliance code pro-
posed as cures for defects;

� provide a centralized source of information regarding known problems and possible
cures for various platforms; and

� provide a framework for easily adding both newly-discovered defects and new (or im-
proved) defect cures to the package.

In brief, as stated in the original project proposal, “[t]he main goal of the new package is to allow
developers at all levels of activity to program in a way as close to standard C++ as possible with a
minimum of intrusion into user code.”

To accomplish this, ISOcxx incorporates fixes to C++ development platforms to account for
environments1 that do not comply with the ISO C++ language and library standard. Each C++ lan-
guage or library feature that is not compliant is known as a defect. Typically, such a defect results
from a feature that is required by the ISO C++ standard, but that a particular environment omits
entirely, provides only incompletely, matches to an earlier (outdated, superseded) draft of the stan-
dard, or otherwise incorrectly supports (in whole or in part).

In this package, each defect is defined by one or more test programs that demonstrate a spe-
cific area of non-compliance. To the extent possible, each such defect (or group of related defects)
is accompanied by compliance code, additional software that addresses the defect and attempts to
cure (remedy or ameliorate) some or all of its consequences. The success of any cure is evaluated
by the extent to which all test programs demonstrating the corresponding defect can be successfully
compiled, linked, and run when the compliance code is incorporated and correctly used.

2 An Example

As a small sample of a defect cured by this package, consider the following client code fragment:
for (int k = 0; k < N; ++k) {

// ...

}

int k;

This code complies with the C++ Standard2, but is rejected by compilers that conform to earlier
rules. In particular, the 1998 Standard specifies, for names declared in for-statements, scope rules
that differ from those originally detailed in the ARM3. Under the older rules, the above code frag-
ment will not compile, because the k declared in the for will still be in scope when the second k

is defined. However, using this ISOcxx portability package, the fragment will compile, without
change, according to the Standard’s scope rules (the first k’s scope ends at the for’s closing brace)
in compliant and noncompliant environments alike.

3 Usage by Client Software

Client source code interfaces with this portability package via several simple practices that provide
the desired objective of maximally portable C++ software. For example, all client source code first
connects to this portability package by inserting, at the top of each source file, the directive:

#include "ISOcxx.h"

In every client source file, any code ahead of this directive will not receive the full benefits of any
of the package’s available cures. Therefore, it is strongly recommended that the directive come
first. (Leading comments are, of course, OK.)

Beyond the presence of this directive, much of this portability package’s compliance code
is transparent: inspection of client source code reveals no trace that compliance code was needed
or used. Such code typically takes the form of replacements for keywords or library headers in
which defects have been demonstrated. Implicit activation of such code is made possible via the
cooperation of the ISOcxx header and the compilation and linking practices described below.

Unfortunately, not all known defects can be cured transparently. In these cases, the compli-
ance code does require client code cooperation to achieve its cure, typically in the form of specific

1For purposes of this package, such a development environment is composed of: a hardware platform, a version of
an operating system, a version of a C++ compiler, a version of a C++ run-time library (if distinct from the compiler
version), and a set of options used to preprocess, compile, and link target software.

2International Standard ISO/IEC 14882: Programming languages — C++. 1998-09-01.
3Margaret A. Ellis and Bjarne Stroustrup: The Annotated C++ Reference Manual, 1990. ISBN 0-201-51459-1.

macro calls in lieu of (or in addition to) otherwise standard C++.
Due to limitations in the state of the art, some known defects do not have associated compli-

ance code. We therefore recommend to avoid the use of the language or library feature that engen-
ders such defects. If such avoidance is undesirable, it may be possible for client software to provide
two code fragments, one that operates in the presence of the defect while the other operates in the
defect’s absence.

To facilitate this, this portability package shares its knowledge of the presence or absence of
each defect in a given environment. For each defect, the package provides a unique symbol (of the
form DEFECT_*) that is defined if and only if the defect is present, and a unique symbol (of the form
ISOcxx_*) that is defined if and only if the defect is absent. Via these symbols, client code has the
compile-time ability to interrogate the status of any defects of interest, and to take direct control
via code conditioned on the presence of any corresponding symbol. Documentation for each defect
clearly identifies the pair of symbols with which the defect is associated.

Because this portability package is designed to bridge any gaps between an environment
and the C++ language standard, it is typically necessary to make certain adjustments to compilation
and link commands to enable seamless cooperation between the package and the environment. The
main adjustment is to those flags in the compile command that govern the order in which directories
are searched to locate system header files. In particular, ISOcxx directories must be searched for
these headers ahead of any other (environment-specific) directory.

Fermilab’s Run II build tool, SoftRelTools (SRT), is already environment-dependent, hence
client code compiled and linked via SRT needs little or no adjustment as described above. Absent
SRT, the needed adjustments will inherently vary by environment.

4 Package Configuration and Maintenance

Configuration consists of running a script (configure) that probes the environment to determine
its behavior and so determine what, if any, cures the package needs to enable. Thus, the behavior of
this portability package is tied to the environment in which it is built, which must then be identical
in every respect to the environment in which it is employed. A change in a single command-line
switch, for example, may very well be sufficient to change the behavior of the environment, hence
in the behavior of this package. Therefore this package must be reconfigured (a matter of two to
five minutes) whenever any component of the environment changes. Multiple configurations (e.g.,
one for debugging, another for optimization, etc.) are supported via SRT.

Internally, the configuration process consists primarily of a sequence of attempts to compile,
link, and execute (in the defined environment) all of ISOcxx’s test programs that define the defects
this package addresses. For each such attempt, there is printed a message of the form:

checking <defect>... <status>

in which <defect> identifies the test under consideration, and <status> identifies the result of
the test. In many cases, <defect> includes the name of the specific test program being attempted.
The primary <status> information messages are:

� ok (the defect is not present in the local environment),
� defective (the defect is present and we will try the proposed cure),
� cured (the compliance code for this defect is efficacious), and
� PROBLEM! (the compliance code does not cure the defect as expected).

The last of these may arise while attempting to maintain the package (by extending the defect cov-
erage or by porting to a new environment), but not otherwise.

The consolidated results of this environment-probing process are recorded in a single file
(ISOcxx.h). As described above, this file represents the public interface to ISOcxx client software.

It must therefore be installed in a directory that is automatically searched whenever client software
is built.

This portability package is configured via SRT by issuing the command:
gmake ISOcxx.include

Outside a Fermilab SRT environment, it is necessary to build this portability package by running
the configure script (found in the package’s top-level directory) by hand. Then, the resulting
ISOcxx.h file must be installed in a suitable directory that will be implicitly or explicitly searched
when client software is built. (The ISOcxx package has not as yet been tested outside the SRT
environment; detailed instructions will be available once such testing has been completed.)

This portability package is maintained via the use of the autoconf utility (version 2.13 or
higher). This software is designed to automate the production of the script that is run during config-
uration to customize a package to its local environment. For ISOcxx purposes, the script produced
in this way is named configure, and may be found in the ISOcxx package’s top-level directory.
Note that autoconf is not needed in order to distribute, configure, or use ISOcxx; autoconf (and
its prerequisite software, m4) is only needed for package maintenance.

5 Current Status and Future Plans

The alpha release of this C++ Portability Package is currently available via the FPCLTF (“Zoom”)
project repository4. This release addresses approximately 30 defects that are primarily language-
related and approximately 20 defects that are primarily library-related. This is in addition to the im-
portant issue of outdated, nonstandard, and nonportable library header names (e.g., <iostream.h>).

This release supports operations only within a SoftRelTools environment. A beta release, in-
cluding support for non-SRT environments, is expected within a few weeks. Once proven stable,
ISOcxx may be incorporated into CLHEP (preliminary discussions have yielded favorable com-
ments) and thus become available through the usual CLHEP channels.

6 Acknowledgments

Many individuals at Fermilab contributed to the list of defects this project addresses. In particu-
lar, the pioneering work of Robert Kennedy is gratefully acknowledged, as are contributions from
David Adams, Chris Green (co-author of the original proposal), Scott Snyder, Gordon Watts, and
the Zoom4 project. Non-Fermi sources included the Blitz++5, CLHEP6, and STLport7 projects.

7 Call for Participation

Contributions to the C++ Portability Project are invited and welcomed. Questions, concerns, sug-
gested improvements, additional defects, or other extensions to this package may be sent via email
to zoom-support@fnal.gov. When reporting a new defect, please also furnish a (small!) pro-
gram that demonstrates the defect in isolation, together (if possible) with a suggested cure; kindly
also identify the specific environment that first manifested the defect.

4Mark Fischler, et al.: www.fnal.gov/docs/working-groups/fpcltf/fpcltf.html.
5Todd Veldhuizen: oonumerics.org/blitz.
6Evgueni Tchernaiev, et al.: wwwinfo.cern.ch/asd/lhc++/clhep/index.html.
7Boris Fomitchev: www.STLport.org.

