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Abstract

Modern detectors of elementary particles achieve a very high accuracy of coordinate mea-
surements (the order of tens of microns). However heavy physical backgrounds can decrease
the accuracy in several orders of magnitude. Therefore one needs to choose an optimal track
fitting procedure, i.e. an easy-in-use calculating approach guaranteeing the best track para-
meters estimation. This task is especially important for processing of contaminated data from
high-accuracy cathode strip chambers. Since the traditional least squares method (LSQ) looses
its optimal properties on contaminated data, some of authors made attempts to apply an LSQ
modification with refitting track after rejecting more distant points. A ”straight” application
of maximum likelihood method (MLM) improves the situation significantly, but leads to quite
cumbersome calculating procedures. Thus the problem is to choose a user-friendly calculating
procedure giving the most accurate result. We propose a robust track fitting procedure with a
sub-optimal weight function. Our approach can be characterized by a mathematical simplicity,
easy-calculated weights and a high-speed program realization. In our comparative study we
estimate track parameters on data simulated for a cathode strip chamber applying a pure LSQ
method, LSQ method with point rejecting, a ”straight” MLM and our robust technique. The
results obtained demonstrate the advantages of our robust approach.
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1 Introduction

Modern detectors of elementary particles achieve a very high accuracy of coordinate measurements
(the order of tens microns). Cathode strip chambers (CSCs), i.e. six-layer multiwire proportional
chambers with a strip cathode readout, are used as muon detectors in the forward region of CMS.
About 10-20% of the muon hits in a CSC will be contaminated by different sources, but we consider
here two of them most essential: (i) secondary electromagnetic (e.m.) particles (γ and e−/e+)
entering a muon detector from a calorimeter with a muon and (ii) δ-electrons produced by a muon
passing through the material of a muon detector. As a result, the error distribution differs from the
normal (Gaussian) distribution and tends to have long non-Gaussian ”tails”. Since the traditional
least squares method (LSQ) looses its optimal properties on contaminated data, some of authors
made attempts to apply an LSQ modification with refitting track after rejecting more distant points
[1]. A straightforward application of maximum likelihood method (MLM) improves the situation
significantly, but leads to quite cumbersome calculating procedures. Thus the problem is to choose
an easy-in-use calculating procedure giving the most accurate result.



2 Mathematical formalism

Let us consider a linear regression dependence

xi =
p∑

j=1

φj(zi) · θj + di , i = 1, . . . ,N, (1)

where φj(z) is a known set of p linearly independent polynomials (e.g., 1, z, . . . zp−1 ); zi - a
given coordinate in the i-th detector plane; xi - a response of the i-th detector plane (a measure-
ment result); di - an accidental measurement error in this detector plane; θj - unknown regression
parameters (j = 1, . . . , p), which should be estimated by the use of data sample; N - a number of
detector planes used for fitting.

We use so-called gross-error model [2] for the contaminated distribution of measurement
errors di:

f(d) = (1− ε) · g(d) + ε · h(d) , (2)

where g is the Gauss distribution g(di) = 1
σ·
√
2π

· e−
d2i

2·σ2 ; ε is a parameter of contamination;

h(di) = α · e−β·|di| - an exponential distribution.
ε, α and β were obtained by the parametrization of GEANT [3] results.
Applying the maximum likelihood method (L =

∏N
i=1 f(di) −→ max) we obtain the fol-

lowing system of equations

N∑
i

wi · φj(zi) · di + β · σ2 ·
N∑
i

w̃i · φj(zi) · sign(di) = 0 , j = 1, . . . , p (3)

with optimal weights wi = 1+c

1+c·ed
2
i
/2·σ2−β·|di|

and w̃i ≡ 1 + c− wi,

where c ≡
√
2π·σ·ε·α
1−ε .

Then we choose the 8th and the 4th order polynomial approximations very close to these
optimal weights

wp =




[1 − ( di
c4·σ̂ )

4]2 , |di| ≤ cwσ̂ ; (4a)

[1 − ( di
c2·σ̂ )

2]2 , cwσ̂ < |di| ≤ c2 · σ̂ ; (4b)
0 , |di| > c2 · σ̂, (4c)

(4)

where σ̂2 =
∑

wi·d2i∑
wi

, cw = 2.54, c4 = 3.26 and c2 = 4.19.

The expression (4b) is in fact a bi-weight of Tukey [4]. Forwi > 0.4 we use the weights (4a)
which are more closer to the optimal weights in this interval than bi-weights of Tukey (see Fig.1).
As it can be seen from the Fig.1, the both polynomials: (4a) and (4b) coincide with the optimal
weight function under the value of w = 0.4.

3 Comparative study

We build a Monte-Carlo (M.C.) mathematical model of a linear regression x = az+b for a straight
line muon track passing through 6 equidistant CSC layers. To simulate a contamination we include
δ-electrons and e.m. accompaniment stochastically distributed along the muon track. The contam-
ination parameter ε, the number of δ-electrons in each layer and the distance between the muon and
the δ-electron are parametrised on the basis of a previous GEANT simulation [3] of muons passing



Figure 1: Weight functions in dependence of a relative deviation (WP - a solid line; Woptimal - a dashed line;

WTukey - a dotted line).

Figure 2: The distribution of deviations of straight line intercept parameters bFIT from original Monte-Carlo

parameters bMC (fitted by a Gaussian) . Fig.2a: RMS = 0.046 mm; Fig.2b: RMS = 0.037 mm; Fig.2c: RMS

= 0.019 mm . The visible decrease of a number of entries from Fig.2c to Fig.2a is caused by increasing of

the lost in the corresponding methods.



through all detectors. The LSQ method with a rejection of the most distant points is described in
details in [1]: after fitting of a track, the residual sum of squares is checked for the goodness-of-fit
criterion; if the track does not satisfy this criterion, the most distant point from the fitting line is
rejected and then the track is re-fitted.
As we can see from Fig.2, the distribution of intercept parameter deviations (db) for LSQ track fit-
ting (Fig.2a) has longer tails than the distributions for a least squares fitting with points rejection
(Fig.2b) and a robust fitting (Fig.2c). We have used a standard deviation of a Gauss distribution
of measurement errors as σ = 0.044 mm). The corresponding best estimation ( a lower bound) of
an intercept parameter b is: σ̄b = σ/

√
N = 0.018 mm. As it can be seen from Fig.2a, the value of

root mean square is RMS(db) = 0.046 mm and it exceeds σ̄b in 2.7 times. The modified LSQ with
points rejection improves the situation partially but due to the ”tails” RMS(db) = 0.037 mm which
exceeds σ̄b in 2 times. Only the usage of the iterative robust fitting gives a possibility to obtain the
result very closed to the desired σ̄b. Track parameters obtained by the robust method (Fig.2c) have
a value of RMS in 2 - 2.4 times better than the parameters obtained by the LSQ method and by
the LSQ method with a rejection of distant points. For the slope parameter a we obtained a simi-
lar result. The results obtained applying a ”straight” MLM method are similar to the robust fitting
results but this ”straight” procedure is significantly more expensive.

4 Conclusions

We propose an iterative robust track fitting procedure with a sub-optimal weight function. Our ap-
proach can be characterized by a mathematical simplicity, easy-calculated weights and a high-speed
program realization. In our comparative study we estimate track parameters on data simulated for a
cathode strip chamber applying a pure LSQ method, LSQ method with point rejecting, a ”straight”
MLM and our robust technique. The results obtained demonstrate the advantages of our robust
approach, which gives the parameter estimation very close to the optimal one. Track parameters
obtained by the robust method have a values of RMS in 2 - 2.4 times better than the parameters
obtained by the LSQ method.
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