
The STAR offline framework

V. Fine, Y. Fisyak, V. Perevoztchikov, T.Wenaus

Brookhaven National Laboratory, USA

Abstract

The Solenoidal Tracker At RHIC (STAR) is a large acceptance collider detector, commis-
sioned at Brookhaven National Laboratory in 1999.

STAR has developed a software framework supporting simulation, reconstruction and
analysis in offline production, interactive physics analysis and online monitoring environ-
ments that is well matched both to STAR’s present status of transition between Fortran and
C++ based software and to STAR’s evolution to a fully OO software base. This paper presents
the results of two years effort developing a modular C++ framework based on the ROOT
package that encompasses both wrapped Fortran components (legacy simulation and recon-
struction code) served by IDL-defined data structures, and fully OO components (all physics
analysis code) served by a recently developed object model for event data.

The framework supports chained components, which can themselves be composite sub-
chains, with components (’makers’) managing ’data sets’ they have created and are responsi-
ble for. An St DataSet class from which data sets and makers inherit allows the construction
of hierarchical organisations of components and data, and centralises almost all system tasks
such as data set navigation, I/O, database access, and inter-component communication.

This paper will present an overview of this system, now deployed and well exercised
in production environments with real and simulated data, and in an active physics analysis
development program.

Keywords: OO, Fortran, C++, ROOT, dataset, hierarchy

1 Introduction

The new generation of HENP experiments such as those at RHIC and LHC must contend with
processing and mining heretofore unprecedented amounts of data with highly complex analysis
software developed and used by large worldwide communities of physicists. Object oriented (OO)
programming has been identified and adopted by these communities as an efficient and powerful
approach to developing capable, robust, maintainable software in this environment.

Two years ago STAR started to develop a software framework supporting simulation, re-
construction and analysis in offline production, interactive physics analysis and online monitoring
environments to support STAR’s transition from Fortran to C++ based software and to support the
fully OO software base STAR is migrating to[1].

The framework dictates [2] the architecture of the application. It defines the overall struc-
ture, its partitioning into classes and objects, the key responsibilities thereof, how the classes and
objects collaborate, and the thread of control. The framework predefines these design parameters
so physicists can design their solutions using a proven programming model and can concentrate
on the specifics of their applications.

We understood that a framework would not simply materialise by using object-oriented
techniques. The framework requires a lot of attention if it is going to be successful.



This paper presents STAR’s C++ ROOT-based class library [3] and STAR production frame-
work as “a set of cooperating classes that make up a reusable design for a specific class of soft-
ware” [2].

2 STAR C++ ROOT-based class library

The general view of STAR reconstruction framework as “a set of cooperating classes that make
up a reusable design for a specific class of software” is present on Figure 1. OO model of STAR
reconstruction chain is described in terms of the St DataSet C++ class. This class is used to
describe the hierarchy of the data as well as the hierarchy of the program flow control of the
reconstruction code functional modules.

St DataSet object ::= the “named” collection of St DataSet objects,

where the “collection” (the pointer to ROOT collection object) may contain no object.

Figure 1: OO model of STAR reconstruction / simulation chain

St DataSet class is a base class to implement the directory-like data structures and maintain
them via the St DataSetIter class iterator.

The St DataSet object has a back pointer to its “parent” St DataSet object if any, and the
“character” *name*, and “character” *title*.

The service which this class does provide is to help the user to build and manage the hi-
erarchy of his/her data. For example the method St DataSet::Update allows use some St DataSet
object to update another St DataSet. This is useful when only a fraction of the entire structure
has to updated within production chain looping over “events”. Method “Shunt” allows change the
relationships of some particular St DataSet object with others etc.

Figure 1 shows the main classes derived from the St DataSet one to build the 00 model of
STAR off-line framework.

St DataSet can be iterated using an iterator object (see St DataSetIter) or by St DataSet::Pass
method (see below) and allows us to introduce and change the following relationships between its
components:

• Dataset Member. Any object from the list above is called “DataSet Member”



• Structural member. The “Dataset Member” is its “Structural member” if its “back pointer”
points to this object

• Dataset Owner (parent). We will say this St DataSet object “owns” (or is an owner / parent
of ) another St DataSet object if the last one is its “Structural Member”

• Associated member. If some object is not “Structural member” of this object we will say it
is an “Associated Member” of this dataset

• Orphan dataset. If some dataset is a member of NO other St DataSet object it is called an
“orphan” dataset object

This schema is not ideal but instead of fighting for “purity”, we created a framework that
could be used.

2.1 Classes St Table, St TableSorter, St TableIter

St Table class is a base class-wrapper to maintain the various arrays of the plain C-structures -
tables.

The initial purpose of this class was to provide a tool to migrate from the StAF (Standard
Analysis Framework) employed by STAR on the early stage of the project [1].

The table is very convenient object to save the huge amount of experimental data and ma-
nipulated. All known databases can manipulate with tables. It is much more simple to resolve
“schema evolution” problem for the “plain” tables (“plain” stands for the arrays with no pointers
to another object / structures). It can be used in mixed code environment with Fortran / C / C++.

Class St Table is generated for each table and is supplied with two class-companions,
namely with St TableSorter class to sort the table rows by various foreign keys, and St TableIter
to loop over the sorted table rows.

The present STAR framework provide several I/O formats to save/restore these objects.
There are xdf, root, plain ASCII and MySQL formats. The I/O format is chosen by the steering
code. Usually the users code is not aware about I/O format and is not affected when some format
is changed or new I/O schema is introduced.

Since St Table’s are subclasses of St DataSet it is easy to combine them in the various hi-
erarchical structure. This way we compensate lacking of pointers within St Table objects (Figure
2).

2.2 Class St FileSet

Class St FileSet is to map a real “file directory tree” of the platform we are running on to the
St DataSet instance in memory. Each “pure” St DataSet object is related to the real directory of
some file system (UNIX or Windows for example). The extra data-members of the the subclasses
of St DataSet (St Tables for example) can be converted into the “plain” ASCII ROOT macro with
the regular TObject::SavePrimitive method. Such approach allows people to get access to either
piece of the “naive” data-base, create, edit and play with the same way people do with the software
code. In other words any user can create a prototype of the database he keeps in mind. The user
of the STAR framework “by definition” has skill to use the “regular” shell commands and C++
classes like St DataSet and St Table and designing this “naive” database doesn’t require any extra
knowledge or a special skill.

Every one is free to use for his / her particular task either the “central” data base - “CVS
repository” or one can “check out” CVS stuff and adjust it for the current needs with the trivial
UNIX / Windows commands like “mkdir” / “rmdir” and a “plain text editor”.

This class with the “regular” CVS and AFS facilities allows to created a “naive” but pow-
erful database. AFS provides word-wide access to this “database” and CVS supplies the “house-



Figure 2: STAR data-structure via ROOT object browser.

keeping”.

2.3 Class TVolume/ TVolumeView

These set of classes is to provide tools to access the detailed knowledge on detector implemented
into GEANT3 simulation model [4]. The instance of this class are in use by various piece of the
reconstruction and simulation chain and provide the detector geometry for “Event Display” classes
(see: Figure 3)

Figure 3: A snap-shot of the TPad “view” of STAR dataset object combining TVolume (“detector” geometry)

and St Table (“event” geometry) objects



2.4 Class StChain/StMaker

StMaker is a base class to describe one single step (maker) of the chain of the makers controlled
by the object of the StChain class. Where StChain is a subclass of StMaker. The instances of
StMaker classes works out a dedicated branch of the general dataset, has an access to the rest
dataset tree and can use the legacy Fortran / C simulation and reconstruction modules via special
class ”module wrapper”.

3 Conclusion

Today the STAR reconstruction chain is defined with as a single instance of StChain class. It holds
the instance up to 56 subclasses of StMaker class. Each instance of StMaker class included into
StBFChain is to provide OO definition of the simulation /reconstruction /analysis domain. All
together they create about 300 different instance of St Table class involving 156 legacy Fortran /C
modules. Thanks the framework either part of the chain can be splitted by fractions and saved /
restored using different I/O formats by demand. The table shows how the usage of the C++ code
vs Fortran has been changed for year.

Table I: Trend in usage of OO technology in the STAR off-line software since CHEP’98 (in kLoc (kLoc =
1000*(Line-Of-Code)))

Language CHEP 98 CHEP 2000 2000/98
C++ 27 138 5.1
FORTRAN 90 68 0.75

MORTRAN 28 34 1.2
C 20 24 1.2
IDL 10 13 1.3
ROOT macros - 11 -
KUIP 22 4 0.2
Total kLocs 197 292 1.5

The present framework has being testing for the last year. It was used to produce 100 GBytes
of DST from 3 TBytes of the GEANT-simulated data. It is proved it allows the construction of
hierarchical organisations of components and data, and centralises almost all system tasks such as
data set navigation, I/O, database access, and inter-component communication.

It has been adopted as the official STAR base framework.

References

1 V.Fine, et al. “Steps Towards C++/OO Offline Software in STAR”, CHEP’98, Chicago,
Autumn 1998. (http://www.hep.net/chep98/181.html)

2 Erich Gamma,et al. “Design Patterns: Elements of Reusable Object-Oriented Software”,
Addison-Wesley Pub Co, 1995.

3 V.Fine, “STAR C++ ROOT-based class library”, US HENP ROOT Workshop, Chicago,
March, 1999.

4 V.Fine, P.Nevski, “OO model of STAR detector for simulation, visualisation and recon-
struction”, CHEP’2000, Padova, 2000.

5 Y.Fisyak, “ROOT in STAR”, US HENP ROOT Workshop, Chicago, March, 1999.


