The BaBar Online Databases

G. Zioulas!, Yu. Kolomensky?, S. Metzler?, V. Miftakov®
for the BaBar Computing Group

L Stanford Linear Accelerator Center, Stanford, California 94309, USA
2 Cadlifornialnstitute of Technology, Pasadena, California 91125, USA
3 Princeton University, Princeton, New Jersey 08544, USA

Abstract

The online databases are presented with emphasis on the design and implementation of
the Ambient and Configuration databases. Their performance during the first run of the ex-
periment is discussed. Online database servers and browsers are also described.

Keywords: Database, Online, BaBar, C++, Object Oriented Design
1 Introduction

The BaBar experiment at the Stanford Linear Accelerator Center is designed to study CP violation
in decays of B mesons produced in electron-positron interactions. The experiment started running
in June 1999. During the first 6 months of operation it has recorded over 1.7 fb-! of integrated
luminosity.

BaBar has adopted an object-oriented approach for its online and offline software devel-
opment with C++ as the principal programming language. To store the acquired data an Object
Oriented Database Management System was chosen with a commercial product, Objectivity/DB
[1], as the underlying storage technology.

2 TheOnline Databases

The online system also uses Objectivity/DB for storing time history of the data taking conditions,
fast monitoring histograms, ambient data, and configuration parameters of hardware and software.
The online databases satisfy the following design requirements:
e Support of object-oriented design and implementation with C++ programming interface;
e Hierarchical structure provides logical storage through persistent objects, databases and
federations;
Application-side caching of objects retrieved from the database improves performance;
Autonomous partitioning of the federation and fault tolerance makes the data available dur-
ing network failures;
e Distributed architecture and scalability provides efficient access to Terabytes of data;
e Reuse of existing code developed by the offline system;
e Common tools for administration, maintenance and data distribution.
The online databases consist of three domains: the Conditions, the Ambient and the Configuration.

2.1 Conditions Database

The Conditions database manages and tracks the conditions under which experimental data were
acquired. It is primarily used by the offline system to store the detector calibrations, alignment

etc. but it is also used by the online to store the electronic calibrations and the run information. In
addition, histograms from the Fast Monitoring are also stored in this database.

A detailed description of the design and implementation is given in reference [2]. Here we
describe the Fast Monitoring application.

2.1.1 Fast Monitoring

The BaBar Fast Monitoring system [3] performs automatic comparisons of diagnostic histograms
to references. The system runs on 32 Unix computer nodes. The diagnostic data are saved at the
completion of each run.

The Fast Monitoring system stores its datain the Fast Monitoring database within the con-
ditions domain. The data are stored as a hierarchical structure that mimics the online data organi-
zation. Thetime interval of the database record is the time interval of the run. Data may be read
using a combination of GUI and server tools available through the Distributed Histogramming
Package [4] and the Objectivity Browser [5].

The maximum data quantity stored per runisrestricted to the shared memory segment limit
since data are accessed only through shared memory. That limit is 32 MB. We have approximately
40 runs per day in factory mode, which gives us a maximum storage rate of about 1 GB/day.

2.2 Ambient Database

The Ambient Database is the storage of ambient data which are reported by about 30,000 channels
of the Detector Controls system [6]. The channels are reporting asynchronously at rates varying
from once every few seconds to several times per second. To reduce the number of database
transactions the data is accumulated for a period of one hour. The channels are grouped in objects
based on the source of their origin.

The Ambient database is designed so that each detector subsystem will have an index
database and a number of object databases. The begin and end times, which define the time
interval during which an ambient object is valid, are encapsulated in an interval object along with
apointer to the corresponding ambient object. Theinterval objects are stored in the index database
while the ambient objects are stored in the object databases. The purpose of this separation is to
keep the interval database small in size so it can be efficiently searched. The interval objects are
indexed with Objectivity’s index facility, which allows for rapid lookup of objects. The list of
measurements within each ambient object is implemented with variable arrays (ooVArray). Each
element of an array contains the value, time and status of the measurement. Another list contains
the channel information and pointers to the measurements array. The datafor a specific channel is
accessed by the time interval, object name and channel number.

There are 27 archiving processes writing about 100 objects in the Ambient database. The
archivers flush their data simultaneously once an hour. Thetotal size of the objects is about 2MB.
It takes about one minute to store them in the database.

2.2.1 Ambient Server and Browser

The ambient data are retrieved from the database via a Unix server process. The server uses
CORBA to distribute the data over the network to Java clients for browsing and analysis. The
latest ambient objects entered in the database are trandated into CORBA structs and are added to
a hierarchical structure, the Distributed Object Tree. This tree represents the Ambient database
structure. Users can navigate the distributed tree, select channels and display their time history on
strip charts. The browser sends a request to the server with the corresponding object name and
time interval. The server uses this information to query the database and concatenate the fetched

objects based on the requested time range. The current browser will soon migrate to Java Analysis
Studio (JAS) [7], a desktop data analysis application with a rich graphical interface. JAS will
alow users to view correlations between different channels and between the ambient and physics
data. In the meantime, a C++ application is used to retrieve data from the Ambient database and
fill NTUPLES which can then be displayed with PAW.

2.3 Configuration Database

The Configuration database provides storage of the configuring parameters for various hardware
and software components of the online system.

The configuration objects are clustered together in containers identified by the subsystem
name, class of the object, and an optional secondary key. Each new object is assigned aunique in-
teger index, which allows for efficient retrieval and identification. All objects contain information
about the time of creation, creator and a short description. A more detailed description of the API
isgiven in reference [8].

The Configuration database is organized in a tree-like structure that represents the DAQ
hierarchy. Thistree provides navigation from the top of the hierarchy, indexed by a configuration
key, to the subsystem configuration data on the leaves of the tree. The intermediate nodes of
the tree are implemented as persistent hash tables where named elements are used to look up the
location of the next object along the branch. This organization has the following advantages:

e i improves efficiency and performance. Each subsystem only loads configuration objects it
needs instead of the whole database;

e It alows authorization control based on subsystem level. Users of various subsystems can
work independently without interfering with each other;

e It simplifies partitioning of the system. Different configuration keys can be sent by the Run
Control to different partitions.

Proxies are used to retrieve the data from the Configuration database. The proxies perform
the database operations and cache configuration objects for repeated access, reducing the database
reads and network traffic. A typical configure transition takes about 15 sec which includes the
distribution of the configuration key to various processes and the retrieval of the objects from the
configuration database. Subsequent configure transitions of the same run type are significantly
faster (afew seconds).

2.3.1 Configuration browser and editor

GUI applications written in C++ were provided to edit and browse the Configuration Trees. The
editor allows authorized users to create new or remove old branches of the Configuration Tree
corresponding to their subsystems. In addition they can edit apersistent alias map which associates
the top-level configuration keys with run types.

2.3.2 Dataflow server

The configuration parameters are made available to the Dataflow [9] Readout Modules (ROMS),
which run the VxWorks Tornado operating system, by a dedicated Unix server. The database
objects are transported over the network into ROMs in the form of Tagged Containers (TC), the
self-describing contiguous blocks of data. During a configure transition the client code on a ROM
receives a configuration key from the Run Control and queries the server with the combination of
this key, the TC type and a string secondary key. The server calls the appropriate proxy which
fetches the configuration object from the database, converts it to atagged container and returns it
to the ROM.

3 Operational experience and performance

In the BaBar computing architecture, data are acquired by the online system installed at the inter-
action hall (IR2) and written to files on local disk. The files are transferred over Gigabit ethernet
to afarm of SUN Ultra-5 machines at the SLAC Computing Services building where they are pro-
cessed by the Online Prompt Reconstruction (OPR) and logged to database. To support datataking
and event reconstruction a federation was partitioned between the online databases at IR2 and the
Event Store at SCS. This alows the DAQ to run even if there are network or system problems at
SCS.

Early in the run we found concurrency problems between the online processes trying to
write to the Conditions database and the hundreds of OPR processes trying to read back. The
interference between OPR and online introduced an unacceptable dead time in our DAQ system.
This forced us to split the federation between online and OPR and to periodically sweep the data
between the two federations. Moadifications to the design of the Conditions database were neces-
sary to alow for online and OPR calibrations to be written in the same database [2]. The Ambient
server can aso set locks, while processing requests from the browsers, preventing the archivers
from flushing their data in the database. However, loss of data is minimized because the server is
caching the objects, shortening the legth of its transactions, and the archivers continue to accumu-
late data if they find the database locked when they try to flush.

After splitting the federations the online database system has been more robust. Cron jobs
monitor the state of the online federation and remove locks left by dead processes minimizing
down time.

Work is under way to improve the user interfaces and provide better tools for browsing.
Additional work is needed to minimize the concurrency problems between the online and OPR
and to re-merge the two federations.

4 Acknowledgements

We wish to thank the BaBar database group for their support in implementing and debugging this
system. Thisresearch is supported by the U.S. Department of Energy.

References

1 Objectivity Inc., Mountain View, CA 94041, USA.

2 1. Gaponenko, “An Overview of the BaBar Conditions Database”, CHEP2000, Padova,
Winter 2000.

3 E.Chenet. al, “Automated Data Quality Monitoring in the BaBar Online and Offline Sys-
tems’, CHEP2000, Padova, Winter 2000.

4 S Metzler et. al, “Distributed Histogramming”, CHEP 98, Chicago, Autumn 1998.

5 A. Adesanya, “An interactive browser for BaBar databases’, CHEP2000, Padova, Winter
2000.

6 J Olsen, “BaBar Online Detector Control”, CHEP2000, Padova, Winter 2000.

7 A.Johnson et. al, “Java Analysis Studio”, CHEP 98, Chicago, Autumn 1998.

8 Yu. Kolomensky et. al, “Configuration Database for BaBar Online System” , CHEP' 98,
Chicago, Autumn 1998.

9 R. Hamilton et. al, “The BaBar Data Acquisition System”, CHEP 98, Chicago, Autumn
1998.

