
Atlas event data model optimization studies
based on the use of segmented VArray in Objectivity/DB.

S. Rolli1, A. Salvadori2,A.C. Schaffer2;3,M. Schaller2;4

1 Tufts University, Medford, MA, USA
2 CERN, Geneva,Switzerland
3 Laboratoire de l’Accelerateur Lineaire (LAL), Inst.National de Physique Nucleaire et de Particules

Univ.de Paris Sud, Universite de Paris-Sud (ParisXI), Paris, France
4 Innsbruck University, Austria

Abstract

The current raw data event model for ATLAS is benchmarked for writing and reading per-
formances as well as an extension of it based on the the use of segmented VArray (SegVAr-
ray). SegVArray is a multilevel variable-size array with the same interface as the Objectivi-
ty/DB VArray class, but containing ooVArray of SVArraySegments, each of them containing
an ooVArray of objects that are the elements of the SegVArray.

The advantages compared to the ooVArray class might be manifold as illustrated through
the performance benchmarks performed on a toy model as well as the ATLAS raw data event
model.

Keywords: database, Objectivity/DB, event data model

1 Introduction

The key software elements which directly concern the computing model which will satisfy the
major storage needs of the ATLAS experiment, are the management and the storage of the data,
where the two central components for the data storage are: 1) an Object Database Management
System (ODBMS) and 2) a Mass Storage System (MSS). RD45[1] investigated the use of com-
mercial ODBMS and MSS in HEP and at the moment the candidate solution is represented by the
use of Objectivity/DB[2] coupled to HPSS[3].
The various objects of an event are clustered together to define different event object groups used
in the offline analysis: raw data, ESD, AOD, tag1 . In this paper we will be concerned with raw
data. The actual ATLAS raw data event model organizes each channel response as digits which
are contained by an object representing the detector element which produced it, e.g. silicon wafer.
Each detector elements provides an Identifier, to allow for both identification and data selection.
The most natural way to store the large number of digits is through the use of arrays.
Objectivity/DB provides several persistent array data structures:

1) Fixed-size array. The size of this array is specified in the DDL file and cannot be changed
at run time.
2) variable-size array (VArray). The size of the VArray can be changed at runtime. The
contents of the variable-size array is guaranteed to be allocated in adjacent fashion in the
persistent storage.
3) vector<T>. Support for a persistent version of C++ STL containers has been recently
added.

1ESD also known as Event Summary Data, contain enough information to allow for reconstruction of the event,
AOD, or Analysis Object Data, contain the parts most needed for the analysis and TAG is a very compact information,
allowing for fast access of the data

None of them is totally adequate to be used as a digits container. Fixed-size arrays clearly disqual-
ify, the number of digits varying event by event. VArrays have some constrains that make their
usage as digits container problematic. Adjacent allocation of storage offers indeed faster element
access than non adjacent allocation but it might lead to expensive resize operations. If the size of
the array is extended another larger adjacent block of storage has to be allocated and the content of
the original array has to be copied to the new place. The effective limit in the size of the VArray
comes from the fact that the entire VArray must be read in memory before an operation can be per-
formed on it. This is useful if all the elements are accessed, but it’s not always the optimal solution.
If only one or a couple of elements are accessed by the application this additional constraint rep-
resent a severe performance drawback. The last array class is a persistent version of vector<T>
and has still sever performance problems.

In this paper we describe an array structure, the multi-level array, that might overcome the
previous mentioned problems. The multi-level array data structure splits a large array up into s-
maller fixed-size arrays called segments. A variable size array refers to the segments. If an entry
of the multi-level array is accessed only the variable-size array referring to the segments and the
segment containing the entry have to be brought into memory. The size of the segment is a critical

SegVArray<T>
segments : ooVArrayT<ooRef(SVarrSegment<T>)>

size() : int
update() : ooStatus
elem(index) : T&
perator[](index) : T&
set(index, newValue) : ooStatus

SVArrSegment<T>
array : ooVArrayT<T>

*

11

*

Figure 1: The segmented VArray

parameter. Since the page size is the unit of data transferred between main memory and secondary
storage, there is no advantage to make the segment smaller than the page size. On the other hand,
if the segment size is larger than the page size, an additional space overhead in the size of half page
occurs. This overhead is acceptable only if the segment size is large compared to the size of half
page, say if the segment is larger than four pages. Objectivity/DB has developed an unsupported
multi-array raArray and the class SegVArray has been written as a modification of raArray. The
class diagram is shown in figure 1 . SegVArray contains an ooVArray to the SegVArraySegments.
Each SVArraySegment contains an ooVArray containing the objects that are elements of the Seg-
VArray.
The advantages compared to the ooVArray class are:

� if only some objects of the array are read in, only the segments are read that contain these
objects, therefore the SegVArray can be used for very large arrays as well.

� If a segment of a SegVArray fits onto one page, the SegVArray can span several pages with-
out the overhead half page for large objects.

The disadvantages are of course the bad performances of the SegVArray for the case that most of
the elements are read from the SegVArray. This is particularly true if operator[] is used to access
the information. Reading performance tests have been conducted on several of the models outlined
below, using the operator[] to access all the elments of the SegVArray and the results are extremely
CPU bounded. On the other hand, the use of an iterator can improve performances dramatically,
even in the case of reading all the elements of the SegVArray. Indeed a SegVArrayIterator class has
been designed and implemented with the characteristic of a STL random iterator and the results of
using it to read all the elements are very good.

In the following sections we present some results relative to reading and writing benchmarks
using the original ATLAS event data model, as well as modification of it, based on the use of Seg-
VArray.

ooObj

Event EvtObjVector

*1 *1

PEvtObj

*1 *1

PDigit

*11 *

implemented
as VArray

Figure 2: The original ATLAS raw data event mod-

el

ooObj

PNode2 PDigitPNode1

*1 *1 *1 *1

PNode4 PNode3

*1 *1*11 *

all associations
are implemented
as VArrays

serves as
collection
class

Figure 3: The generic event model modeled after

the original ATLAS event model

Table I: Typical fan-out for the ATLAS raw data model components
detector EvtObjVector EvtObj Digit

fan-out size fan-out size average VArray size (byte)
Si 1500 23 7 12 85
TRT 600 23 13 8 100
Calo 40 23 200 8 1600

2 The original ATLAS raw data model

The original raw data event model is shown in figure 2. The digits are contained in the detector
element object (PEvtObj), through VArrays. PEvtObj are contained in PEvtObjVectors, through
a 1-to-many bidirectional association. There are about 10 EvtObjVector objects for each Event
object, one for each detector system.

A more generic event model, modeled after the original one, has been benchmarked, see
figure 3. All the associations are implemented through the use of VArray. PNode3 corresponds
to the Event class, PNode2 to EvtObjVector and PNode1 to PEvtObj. The new Digit is of a more
generic form. Pnode4 corresponds to a generic event collection. The fan-out shown in TableII were
used. The page size is 8 KB. Server and client were hosted on two independent machines:
� 2 * Sun UltraSPARC II 399MHz; 512MB memory with Hitachi RAID unit with typical data

transfer of 25MB/sec (server and local/remote client);

� SUN UltraSPARC II 270MHz, 192MB memory, Elite23 drives - 9MB/sec (remote server).

The network speed between the two machines have been measured to be about 7.4 MB/sec. The
benchmarks results are reported in TableIII: the rates are derived by dividing the the size of the
database by the total time taken by the application to access it to write or read (as given by the
Unix command time). We would like to notice that in the results reported in Table III the user time
is of order 60% to 80% of the real time. The database size is 197.8 MB, corresponding roughly to
0.66MB per PNode3.

Table II: Fan-out for the model of Fig. 3 and the one of Fig. 4
PNode4 PNode3 PNode2 PNode1

fan-out 300 10 100 50

Table III: Original event model benchmarks results
local AMS

writing 5.7MB/s 3.7MB/s
reading 10.1MB/s 2.8MB/s

3 The modified event raw data model

A modified version of the event model is shown in figure 4. The digits have been clustered together
and moved to PNode2, in order to obtain larger VArray sizes. The fan out for the nodes is the same
as for the original model (TableII). Each digit consists of 3 integer numbers, so the total size in
bytes of the VArray is given by : 50 � 3 � 4 � 100 = 60000. The page size chosen is of 8 KB.
The database size is 198 MB, corresponding roughly to 0.66MB per PNode3. The results are sum-
marized in tableIV: once again the rates are derived by dividing the the size of the database by the
total time taken by the application to access it to write or read it (as given by the Unix command
time). Even in these results the user time is of order 60% to 80% of the real time.
We would like to remind that a VArray of 60000 bytes occupies 9 8KB pages, leading to an over-
head of 22%. Would have we chosen a page size of 16KB, the pages occupied would have been 5,
leading to an overhead of 36%.

Table IV: Modified event model benchmarks results
local AMS

writing 10.8MB/s 6.7MB/s
reading 13.88MB/s 4.6MB/s

We notice that the half-page overhead for large objects is a sever constraint for VArrays that
are larger than the page size, but occupies only several pages. On the other hand very large objects
are read very fast (see also [4], Table 1).

Figure 4: The modified Event Model

Figure 5: The new Atlas Event Model

Table V: Fan-out for the SegVArray-based event model
PNode3 PNode2 PNode1 PDigit
100 (25) 10 5*I; I:1-10 +=5*I; I:1-10

4 The new ATLAS raw data model

In the new event model the digits have been been clustered together as in the modified model and
moved to PNode2, this time through a SegVArray. As it is shown in figure 5, PNode2 contains also
a SegVArray<ooRef(PNode1)> where actually the class PIndex is stored, such that it is possible to
have a map of the digits indexes corresponding to the various detector elements. The associations
between PNode3 and Pnode4 and Pnode3 and Pnode2 have been implemented using Objectivi-
ty/DB one-to-many bidirectional associations. A more realistic fan out for the nodes is reported in
table V, such that now the size of the data stored in the SegVArrays of Digits varies between 900
bytes and 76500 bytes. Different databases were created corresponding to a different number of
pages per segment. The page size is always 8KB.

The results for reading the digits, locally or via AMS using an iterator, are reported in table
VI and VII: in the case all the digits are read, the iterator over the digits is used, while in the case
one digit is read per PNode1, the iterator over SegVArray<ooRef(PNode1)> is used, to select the
corresponding digit. This might imply an effective larger volume of data read, in respect to not
using the iterator over SegVArray<ooRef(PNode1)>, but the fact that the size of the digits array
is variable doesn’t leave us any other choice. The rates are derived by dividing the the size of the

Table VI: Benchmarks results on the new ATLAS event data model
Pages per segment 1 2

Local AMS Local AMS
reading(1) (MB/s) 8.52 3.27 9.0 0.95
reading(2) (MB/s) 9.49 4.60 6.21 2.43
(1) 1 digit per node1;
(2) all the digits;
Database size 552 MB 540
PNode4 50 (25 PNode3 each) 9 (100 PNode3 each)

Table VII: Benchmarks results on the new ATLAS event data model
Pages per segment 4 8

Local AMS Local AMS
reading(1) (MB/s) 12.48 3.72 10.68 3.29
reading(2) (MB/s) 11.10 5.71 7.62 5.11
(1) 1 digit per node1;
(2) all the digits;
Database size 565 MB 543 MB
PNode4 10 (100 PNode3 each) 11 (100 PNode3 each)

database by the total time taken by the application to access it to write or read it (as given by the
Unix command time). The user time is of order 15% to 30% of the real time.
Performances improve when only a few elements are accessed by a local application, except when
the number of pages per segment is 1 (Table VI, column 1). In this case in fact accessing just
one digit per detector element, or all of the digits is equivalent from the point of view of the pages
brought into memory. The size of an event (PNode3) is roughly 0.50MB. More detailed studies of
storage overhead will be performed in the future.

5 Conclusions

In this paper we have reported on preliminary studies on using variable size array (Objectivyt/DB
VArray) and multi-level variable size arrays (Objectivity/DB SegVArray) to model the ATLAS raw
data event model. We have presented some reading rates in the case all the digits are accessed by
the application or only few of them. Performances improve especially when only a few elements
are accessed by a local application. When the access is done remotely accessing only few elements
is more time consuming, due also to the internal page caching mechanism in Objectivity/DB using
AMS.
We notice that we are still well within an estimated budget of 1MB/sec which might be sufficient to
reconstruct an ATLAS event in a standard way. Further studies are necessary in order to optimize
the use of these class of arrays, and the event model itself. To this extent we plan to use the large
volume of ATLAS simulated raw data.

References

1 RD45 Collaboration: Using an Object Database and Mass Storage System for Physics Anal-
ysis. Technical Report CERN/LHCC 97-9, CERN 1997.

2 http://www.objectivity.com.
3 http://www.sdsc.edu/hpss/hpss.html.
4 W.D.Dagenhart, K. Karr, S. Rolli and K. Sliwa, CDF/DOC/COMP UPG/Public/4522

available at:http://130.64.8.4/CDF-OBJY/cdf4522_objy_status_rep.ps.

