
Impact of Software Review and Inspection

I. Alexandrov1, V. Amaral2, A. Amorim2, E. Badescu3, D. Burckhart4, M. Caprini4,9, L. Cohen5,
P-Y. Duval5, R. Hart6, R. Jones4, A. Kazarov7, S. Kolos4,10, V. Kotov1, D. Laugier5, L. Mapelli4,11,
L. Moneta8, Z. Qian5, C. Ribeiro2, V. Roumiantsev1, Y. Ryabov7, D. Schweiger4, I. Soloviev4,10

1 Joint Institute for Nuclear Research, Dubna, Russia
2 Lisbon Institute of Physics, Lisbon, Portugal
3 Institute of Atomic Physics, Bucharest, Romania
4 CERN, Geneva, Switzerland
5 Centre de Physique des Particules de Marseille, IN2P3, France
6 NIKHEF, Amsterdam, Netherlands
7 Petersburg Nuclear Physics Institute (PNPI), Gatchina, St. Petersburg, Russia
8 Section de Physique, Universite de Geneve, Geneva, Switzerland
9 On leave from 3.
10 On leave from 8.
11 Spokeperson for DAQ-1 project

Abstract

The Software Review has been part of the software process for the ATLAS Data Acquisi-
tion Project DAQ/EF-1 since its start in 1996. Taking the form of an informal review, the soft-
ware is presented at each of its phases to the group during a meeting and then discussed aiming
for an accept/reject decision.

In 1998 the more formal Software Inspection process based on Tom Gilb’s method has been
introduced. Software Inspection is a quality improvement process of written material including
code with the objectives of defect detection and subsequently defect prevention. Improvements
are achieved for the end-product as well as for the process of document and code production.
Flexibility built into the working process allows methods and rules to be updated in response to
participants’ suggestion and change in technology. It provides ongoing integration and educa-
tion of participants.

A number of Software Inspections on Requirements, Design, Code and its documentation
have been performed. A project specific database of metrics has been established since the
introduction of such inspections. Results show the importance of software inspection for the
entire software lifecycle and in particular of the requirements to ensure defect detection early in
the production phase. Areas for improvement have been identified in the fields of coding con-
ventions, naming rules and guidelines for establishing and using document templates in order to
facilitate communication and integration of individual project components.

Keywords: Quality Assurance, Software Development Process, Inspection, Review, DAQ, Atlas,

1 Introduction

This paper reports on the evaluation of review and software inspection as part of the software
development process (SDP) in the context of quality assurance for the ATLAS [1] DAQ Back-end
software sub-system [2][3][4] which is part of the DAQ/Event Filter Prototype “-1” project for the
ATLAS experiment.

2 The Atlas DAQ Back-end Software Development

The Back-end software encompasses all the software to do with configuring, controlling and moni-
toring the DAQ but specifically excludes the management, processing or transportation of physics
data. This project has been divided into 12 components[2][3]. Typically, a single institute has taken
responsibility for developing a component thereby simplifying communication and reducing
travel. The same individuals tend to follow a single component through the various phases.

By applying a Software Development Process the development has been divided into a
number of sequential phases intended to help pace and organise the work. Each phase has been
defined to produce an obvious deliverable, i.e. document and/or code. Each deliverable from each
phase is reviewed before progressing to the next phase. The phases are: collect requirements;
identify and evaluate candidate technologies and techniques capable of addressing the common
issues identified from the requirements; produce a design for each component covering the most
important aspects; refine the design to add more detail; implement and unit test according to the
design; integrate with other components. Later more formal inspections were introduced using a
system of peer review supported by guidelines and checklists for documentation and code.

3 Informal Reviews

Reviews have been performed since the beginning of the project. They take the form of
presentations followed by discussions during open meetings with all developers involved in the
project. The developer of a component from a participating institute prepares the document. Then
one or more colleagues, often the project leader, go through it and comment on it. When corrections
have been made the document is made available to the project members who are supposed to read
it. Reviews are organized during the monthly Back-end meetings where a developer presents the
status and results from a development phase or a list of items to be investigated for the next phase.
The aim is to inform other project members and also to receive feedback. Since the advances of the
project software is governed by regular releases, the list of additions and changes per component
for the next release is also presented. During the subsequent discussion open items are clarified, the
relation to other project components is discussed and the component in its phase is accepted or
suggestions for modifications and enhancements are made. Decisions for further development are
taken.

3.1 Results

Each component of the Back-end project has been reviewed before progressing to the next phase.
Code has generally not been reviewed. In some cases code fragments were identified to be
sufficiently interesting or informative and have been presented as well.

The review of each deliverable in the Back-end project at each of its phases has lead to a
coherent set of end-product components. Modifications of a component due to the evolution in
ideas or due to technical constraints could be accommodated in agreement with other components
and their developers. In one case the discussion has even lead to the development of a new
component, the Information Service [2][3].

Reviews have created the basic culture for individual developers located in geographically
distinct institutes to form a team and to work successfully in a common project. Presentation of
their work in the review meetings showed that their peers valued their work, kept them informed
about the work of their colleagues and discussions during and outside the meetings increased
communication. A drawback was that the reviews on the documentation and code were not
performed thoroughly and often team members did not find the time to read the documents before
the meeting. This has led to the introduction of more formal inspections with its structured
organisation and clear allocation of working time for inspection work.

4 Software Inspection

Software Inspection is a technique for achieving quality control for written material and for
identifying associated process improvements. Its regular application and success in the software
industry suggested its introduction to the on-line computing environment. It has first been invented
by M. Fagan at IBM in 1976 and has since been improved [5] and adapted by many major software
companies. It is part of quality assurance in the SDP, it complements automatic checking tools and
is performed by real people.

4.1 Principal Aims of Software Inspection

Inspection as part of the Defect Detection Process is performed before testing, and to complement
testing. The relation to the SDP is illustrated in figure [1]. Documents are checked for cleanness
and consistency against rules. The objective is to identify and correct major defects in the candidate
product before releasing it from the current development phase.

The Defect Prevention Process is concerned with learning from the defects found, and
suggesting ways of improving the processes to prevent them from re-occurring in the future. It
involves process analysis which is carried out off-line from the normal inspection of specific
documents. Team participants profit from the experience made during the inspection when
producing their own work while the inspection process is improved on participant’s suggestions
and according to changes in technology.

On the job training is a valuable benefit of a dynamic and open inspection process. It
provides implicit integration and education of people which are new to the project. It helps in
building up the project’s working culture. A basic set of process guidelines, checklists and rules is
available for convenient entry into the project while being open to easy modifications and additions
of new ideas.

4.2 The Software Inspection Procedure and the Inspection Team

The Back-end inspection process [6] applied in the Atlas Back-end software subsystem is based on
the inspection method developed by Tom Gilb [5][7]. Inspection is based on a well defined and
organized procedure following a sequence of actions including meetings and work done by
individuals. It is important to provide this basic framework in order to avoid inspection team
participants wasting valuable time. Deviations from the proposed structure are allowed whenever
it increases overall efficiency.

Inspection in a project must be introduced and managed by a dedicated person, the
Inspection Manager. He has the overall responsibility to introduce the inspection process to the
project and adapt it to the environment. In collaboration with the inspection leaders and interested
project members he proposes the inspections to be performed, keeps track of changes to the
process, procedures, rules and guidelines in order to keep the Inspection Process dynamic and up
to date. The inspection manager must have the backup of the project leader yet should be a different
person.

Each Inspection is organized by an inspection leader. He assembles the Inspection team,
which consists of the document author, three to five inspectors and the inspection leader.
Experienced peers and one or two novices are invited to each inspection. This is particularly
appropriate when they are likely to be involved in the production of a package which depends on
the product. Inspectors who are involved more directly in the project are more likely to get the
correct and important feeling that their work is valued and useful to the project. In this context it is
equally important that they can see that their suggestions are followed up. The inspection leader has
to plan and lead the individual inspection process, choose the inspectors, plan and moderate
meetings and make sure rules and procedures are followed and updated if necessary. He also has to
make sure Inspection team members understand the purpose, benefit and procedure of the
Inspection process, collect process improvement suggestions and follow them up and collect basic
metrics.

The Inspection Process as displayed in figure [1] is managed by the inspection leader. The
author informs the inspection leader that his document is ready to be inspected. In case of
implementation inspection the code must have passed automatic testing tools like checks for
memory leaks.
At the Planning & Entry the inspection leader checks that the document meets the entry criteria for
Inspection (quick quality check) and appoints 3-5 peers as inspectors. He prepares the lists of
documentation, rules and standards. He may give individual instructions for checking to peers.

Figure 1: The the Software Development Process and the Software Inspection Process

Then he organizes the Kickoff meeting (15mins), where he gives time scales and other
instructions to the peers and the author of the document explains in general terms the structure of
the document. Checking is performed by each peer individually, who logs each defect in a table.
Ideally all documents in the software development process are inspected. Three development
phases are concerned with their corresponding documents which are: Requirements specification,
Architecture Design together with the Test Plan, and Detailed Design together with
Implementation (code) and Users Guide. Documents should only be accepted for inspection, when
its source document has been inspected and accepted.
Documents are compared against mother documents, rules and standards, aided by checklists, and
checked for cleanness and internal consistency. Comments and footnotes are not inspected. It is
recommended to concentrate on the finding of major defects. A defect is defined as a violation of
standards, official rules, in-house rules, and any mismatch as compared to the mother document or
to internal consistency. A major defect would propagate to the end product and could possibly
cause problems at testing time.
When the peers have finished checking at the agreed date the inspection leader organizes the
Logging meeting (max. 2 hours) where major defects are discussed and their acceptance or
rejection is recorded in the inspection issue log.
The Brainstorming meeting (5-30 mins) follows shortly after the logging meeting. In this meeting
feedback on the inspection procedure and change requests to the rules and standards and to the
inspection process itself are handled. Necessary changes are discussed and recorded by the
inspection leader. He also ensures that the necessary actions are performed. The document author
is expected to undertake issue analysis and correction action. He Edits the document accordingly
or rejects the item on the list by adding an explanatory comment. The inspection leader Follows up
the change requests issued at the brainstorming meeting and keeps in contact with the author.
The product is ready for Exit from inspection when all the items on the author advice log have been
satisfactorily worked on or been rejected, and when the data summary and the metrics on the
inspection has been delivered and has been agreed by author and inspection leader.

Regularly updated concise checklists are provided for the inspection team members to help
in their efficient participation. The development of in-house standards which are available for
requirements, design and code allows to separate commonly agreed rules from personal taste.
Checklists as well as standards and rules are part of the framework, they are frozen during the
lifetime of one inspection. Regular updates help to ensure an up-to-date working basis. Valid
versions are available on the project Web pages [6].

Planning & Entry

Edit

Followup

Exit

Issue log

Action

Data
Summary

to project
and process

Kickoff meeting

Logging meeting

Process Brainstorming

Checking
tables

Exit
Product

Inspection
Plan

lists

Change request

Rules

Product

Sources

Checklists

The Software Inspection Process MapInspection in the Software Development Process

Document Inspection

Document Inspection

Document Inspection Code Inspection

Document Inspection

Applying Testing Tools

Code Inspection

Requirements

Design

Implementation

Test Plan

Test Implementation

Test

An easy to use FrameMaker template is provided for the issue log table of each inspection
and is used by the peers. Inspection results, the filled and edited issue log tables, minutes and action
lists are stored under afs with access groups set up individually for each inspection. Access is
restricted and granted to team members of an inspection only. This protection via acl lists has been
introduced to avoid misuse from people who may have no knowledge of the purpose of inspection.
However each team member is free to pass the information with the appropriate comments to his
colleagues.

4.3 Inspections performed in the Atlas DAQ/EF-1 Back-end sub-project

More formal inspection as described above was introduced as an evaluation while development
was already well under way. Therefore only a limited number of deliverables which were produced
could be inspected, only two of them in more than one phase. Three inspections on requirements,
two on design and four on implementation documents were performed on the components
described in [3].

Requirements Document inspection included the Back-end software Diagnostics System
(DS), the Integrated Graphical User Interface (IGUI) and the Data Access Library (DAL). Design
Document inspection included the Test Manager (TM) and the Back-end software Diagnostics
System design (DS). Code inspection included the Inter process Communication Package (IPC),
the Message Reporting System (MRS), the Information Service (IS) and the Data Access library
(DAL). In total 8000 lines of code which is about 20% of the in-house written code of the Back-end
software and 180 pages of documentation were inspected. 19 inspectors and one inspection leader
participated in the inspections.

4.4 Inspection Results

The evaluation was performed during the phase when software inspection was introduced to the
project and it team. Initially a steep learning curve was observed, because inspection was started
basically from an initial level of zero. A high number of issues of varying severity was found. With
the implicit education in the team the number of issues found became lower while concentrating
more around major defects. Authors who have participated in software inspection previously as an
inspector generally provide a cleaner deliverable from the start.
The deliverables of each inspection were:

• The corrected documents and code.
• One issue log table per inspector, filled by him while inspecting and before the logging

meeting. Non-trivial issues were discussed during the meeting. Subsequently the tables were
edited by the author and cross-checked by the peer. The number of issue logs found
depended on the type of inspection (requirements, design, code), the project phase, the entry
conditions (availability of a clean set of rules and guidelines), the experience of the
inspectors and on the counting system. Variations between 10 and 200 issue logs per
inspection were found, minor issues included. Issue counting in the future will be restricted
to major issues.

• Change requests and action lists were discussed and recorded during the meeting. During
the inspection and also during the logging meeting the need for changes of checklists or rules
came up. Certain rules turned out to be too restrictive or not sufficiently concise, checklist
had to be updated according to the evolution of the project and improvements concerning the
inspection process and the development process itself were suggested. For example, for the
requirements inspection a recommendation for the use of the words ‘shall’, ‘should’ and
‘may’ was found to be necessary; for coding the need for the cmdline package for command
line parameters was discovered and exit status conventions were suggested. Action items
came up for issues which were beyond the scope of the particular inspection and had to be
handled outside, for example feasibility tests. The inspection leader followed the change
requests and action lists up.

Requirements inspection were found to be the most important. They are the first in the
chain. Requirement inspection is done because according to experience [7] it takes about one hour
to find a major defect by inspection at an early stage and about nine hours when testing. A defect
may propagate to the end product even with perfect code. Requirement inspection are also the least
time consuming because no or few mother documents must be read and they are generally a few
pages long only. They turned out to be useful to re-visit and clarify strategy and goals. In one case
we experienced the need for a redefinition of the component composition - a component was split
into two distinct parts.

Design inspection are the hardest to perform. It was found to be difficult to define a good set
of guidelines which is not trivial but also not too restrictive. The use of design patterns will be
investigated.

Code inspection are the most time consuming ones. The number of documents involved is
high: code must be checked for internal consistency and against coding rules, the users guide and
the implementation documentation must be inspected and compared against the design and
requirements documents. Automatic checking tools were employed where possible. Sampling has
been performed in some cases and will be employed regularly in the future while concentrating on
critical areas.

5 Experience

A guiding principle for the introduction and for the use of the software inspection method is that
everything is allowed which helps improving the product, the overall production process including
communication amongst project participants or the inspection process itself while keeping
consistency and improving efficiency.

In the HEP environment a number of factors must be considered being different from the
industrial world and their working methods and therefore software inspection has been adapted
according to our needs. Participants in a project in the HEP DAQ environment are each expected to
fulfil all the roles required for the development of a product in a sequential or parallel order whilst
industry is usually structured into a development department, a quality assurance department, a
testing department, etc. Each of those departments has the expertise for the particular project phase
or task.

In order to reach the same level of expertise project members with varying professional
background would have to be trained formally in each of the areas and have working experience for
a significant amount of time. In the case of the Back-end project one inspection leader was trained
in the inspection method but no formal training of inspection team members could be done because
of constraints in cost, time and geographical distribution of project participants. The group is
comprised of a few Cern resident people and a number of collaborators from outside institutes with
additional duties. For the same reason inspection could not be imposed by a project management
as this is common in industry. Participants were convinced of the benefits by receiving personally
the appropriate explanations and by making positive experience.

5.1 Evaluation results

The well defined component structure of the Back-end project and the division of the development
into phases with obvious deliverables by the SDP provided the necessary organisational basis for
the successful introduction of software inspection. Inspection itself supports the SDP by ensuring
good quality deliverables backed up by the establishment of standards and rules. Particular
experience has been gained concerning the following points.

Introducing the inspection method gently when informal reviews are already in place
reduces resistance. Informal reviews have provided the basic culture to make the subsequent
introduction of formal inspection possible. It seemed necessary to provide a more formal
framework in order to pinpoint reviewers to their work and to give them the necessary justification
for spending valuable working time.

Specially in the introductory phase it is important to insist on real logging meetings as
opposed to pure electronically communicated inspection. This is highly appreciated for integration
and educational benefit in particular by new project members. For efficiency logging tables are
filled during the inspection work and the author has a quick look at them before the meeting
accepting the obvious issues. This allows everyone to concentrate at the meeting on the critical
points. Experienced peers can take part via phone. In evaluation phase the outcome expressed as a
number of majors found per page could not be used as a comparable result as each inspection had
its particular circumstances. Success could mainly be shown in the clear acceptance and
appreciation of software inspection by the project members and in the improved end product.

The inspection leader must take care that inspectors are not overloaded by the work for
inspection and choose peers who are interested in the candidate product. Everybody has his load of
work, schedule and responsibilities in their home institutes. Careful planning is vital. He must
provide the basis and must make it possible for potential peers to take part in an inspection. He must
introduce the idea of constructive criticism into the team. It must be emphasized that nobody is
expected to be perfect and also inspection will not find every defect. Perfection is to not necessary,
not efficient and therefore too expensive.

If participants can take an active part in the construction of the working framework by
building up rules and guidelines and achieving agreement on working methods they are likely to
accept it with ease.

Creativity of inspectors in particular in ways of finding hidden majors must be encouraged
to increase productivity. Their contribution is and must be recognized of being important.

For increased efficiency inspection work can be split amongst peers for example: check
against coding rules; consistency with kin documents like Users Guide (check API);
implementation note; consistency with design document; looking for special areas in code like
loops, etc.; functional division: i.e. in a server/client application one inspector may look at the
server, another at the receiver or sender part.

Initially inspectors found many ‘minor’ issues. This improved with time and experience
because authors who also have been inspectors brought their acquired knowledge into the new
document and code. Checkers could then concentrate on the more serious problems.

Software inspection has two fundamentally different aspects:

• It is on one hand an exact, dry, formal, and technical task. Because of its time-consuming
nature efficiency (effectiveness within time) is important to avoid boredom and wasting
inspectors time. A solid process framework with clear instructions, entry condition
checking, focussed meetings, project specific checklists and rules help save time. This must
be balanced with the flexibility of handling each inspection individually while recording
deviations from the standard. Build-in change management concerning rules and the process
itself help in keeping inspection lively and up-to-date.

• Software inspection deals with people. In the HEP DAQ environment people with many
different technical, educational and cultural backgrounds come together and fear to be
judged by foreign colleagues. Open criticism is barely supported. Already the name
‘inspection’ may provoke negative feelings and psychological aspects have to be taken
seriously when introducing the inspection method to a project. Explanations to the
individual emphasizing the aim - the improved end-product as a result of team work as
opposed to criticism of the person - and privacy of direct inspection results within the
inspection team are vital. However having made the active and then passive experience of
constructive criticism and overcoming those fears helps people to integrate, in building up
trust amongst colleagues, even if remote, and in constructing a common working culture.
The vulnerable position of an author in the inspection process must not be neglected. Peers
must demonstrate helpfulness.

5.2 Conclusions and Future

Reviews have proven to help stabilize the Software Development Process and are an integral part.
People get the chance to present their work, receive feedback and integrate it better into the
common project. Reviews will remain an integral part of the SDP.

During the evaluation of software inspection the method has been successfully introduced to
the project. Project members became familiar with the method, the procedure was adapted to the
project and the working environment and sets of rules and checklist were established. Authors
appreciated the gain in quality of their work. A second more stable phase can be envisaged now.
The aim is to apply inspection to all the deliverables in the project in the three basic development
phases of requirements, design and implementation in particular at the start of the life cycle, which
fits well to the start of the development of the final Atlas DAQ software. Training of inspection
leaders will be required. ‘

‘Light’ inspection with the same checking criteria but through sampling, by concentrating
on critical areas and with faster turn around time should be used in more cases, in particular for
evolutionary delivery development. The systematic use of Code checking tools [8] will help reduce
the workload on inspectors. Open logging meetings as opposed to electronically conducted
inspections will be kept as they have proved to be valuable in keeping a common working spirit.
Dynamism and flexibility for the process must be kept alive and rules and checklists continuously
be improved according to the ‘majors’ found and to changes in technology and the evolution of the
project. The quality level can be raised smoothly by raising the level of standards and rules.

6 Acknowledgments

We would like to thank the document authors of the Back-end project for having accepted their
work to be inspected. We are grateful to all the peers for having spent their time improving their
colleagues’ product and for keeping a positive style of encouraging and constructive criticism. The
inspection manager wants to acknowledge specially the valuable inspection team leaders course by
Tom & Kai Gilb, followed by personal consultancy, which helped understand the spirit of
successful software inspection and avoid common mistakes when introducing and conducting
inspection in our project.

7 References

1 ATLAS Technical Proposal, CERN/LHCC/94-43 (ISBN 92-9083-067-0)
2 I.Alexandrov et al., “Back-end sub-system of the ATLAS DAQ prototype”, CHEP-98, Chicago
3 D. Burckhart et al., “Back-end Summary Document”, ATLAS internal note ATL-DAQ-2000-001
4 I.Alexandrov et al., “The Performance and Scalability of the back-end DAQ sub-system”,

CHEP-2000, Padova
5 Tom Gilb, Dorothy Graham, “Software Inspection”, Addison Wesley Longman, Inc.,1993
6 “Software Inspection in the ATLAS DAQ/EF -1 project”,http://atddoc.cern.ch/Atlas/DaqSoft/sde/

inspect/Welcome.html
7 Kai & Tom Gilb, “Inspection Team Leader Training Course”, http://www.result-planning.com/
8 E. A.Ribera et al, “An evaluation of tools for the static checking of C++ code”,CHEP-2000, Padova

	Impact of Software Review and Inspection
	Abstract
	1 Introduction
	2 The Atlas DAQ Back-end Software Development
	3 Informal Reviews
	3.1 Results

	4 Software Inspection
	4.1 Principal Aims of Software Inspection
	4.2 The Software Inspection Procedure and the Inspection Team
	4.3 Inspections performed in the Atlas DAQ/EF-1 Back-end sub-project
	4.4 Inspection Results

	5 Experience
	5.1 Evaluation results
	5.2 Conclusions and Future

	6 Acknowledgments
	7 References

