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1) Introduction

KLOEi is the experiment for which the INFN DAΦNE φ−factory in Frascati,
Italy, was built. Its main goal is the measurement of CP violation at sensitivities
of Ο(10−4), but it is also capable of investigating a whole range of other physics.
The most interesting studies include kaon form factors, kaon rare decay and
radiative φ decays measurements.

KLOE is designed to acquire ~1011 events per year at the full DAΦNE
luminosity of 5x1032 cm−2s−1. The total number of acquired events will be of the
order of 200 billion.

In addition to the physics event data, there are also several other kinds of data
that must be stored and manipulated; calibration, slow control and run condition
data are also very important for reaching the desired physics results.

Taking into account all the data sources, the estimated space requirement for
KLOE is ~1 PB. Obviously, this large amount of data requires an efficient,
reliable and easy to use system.

Given the required computing power and the mass storage requirements, the
best solution would be a supercomputer−like system, but the financial effort for
this kind of system would be too high. Moreover, the most advanced features of
such a system, such as common addressing space and automatic hardware
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recovery, are not essential for the KLOE computing environment, although they
would significantly simplify the system management.

The solution adopted at KLOE is based on a set of medium−sized servers.
Moreover, in order to better follow the changing market trends, all the KLOE
software is developed for several platforms.

2) KLOE software environment

As in many HEP experiments, the KLOE software environment can be divided
in three quite distinct classes:

online or data acquisition (DAQ) software

offline or data analysis software

montecarlo event generators

In this section the description of the parts specific to each environment class
can be found, while the more general parts of the system are described in separate
sections later on in the document.

2.1) The KLOE data acquisition

The KLOE DAQii can be divided in two logical blocks;

The low level block is made of the Front−End electronics, ADC and TDC
VME boards and a complex readout system implemented using custom
devices. This logical block is implemented using custom hardware and
will not be mentioned anymore in this paper.

The high level block is made of VME CPU boards, the online farm of
computing servers and the interconnecting switched network. Only
general purpose commercial hardware is used in this logical block.

The main task of the high level block is to read the pieces of events from the
low level block, merge them into single event frames and save them for offline
processing. Since the number and size of events are very demanding for any
existing database system, the event data are stored as YBOSiii files of reasonable
size (~500 MB at the moment) and only a reference to them is stored in the
database.

All the other data treated by the DAQ, such as configuration, environment and
monitoring data, are much smaller and are thus stored directly in the database.

The software used in the DAQ environment is mostly in−house developed and
is written in ANSI C. However most of the low level activities, such as network
communication, are handled by commercial software.



2.2) The KLOE offline environment

The principal task of the offline programs is the reconstruction and the analysis
of the acquired event data. The reconstruction uses in addition also several
different types of related information, such as the detector geometry and
calibration parameters.

The offline software can be divided in four distinct categories that access data
in different ways:

Software category Description

quasi−online reconstruction
and calibration

programs that run as part of the production process
and access the recently acquired data

reconstruction reprocessing programs that run as part of the production process
and reprocess the data acquired in the past

official data analysis programs that run as part of the production process
and do physics analysis on the reconstructed data

user programs all other programs

The offline software environment is based on a FORTRAN framework, namely
Analysis_Controliv (A_C), where software modules can be combined to obtain the
desired result. Actually, most of the modules are common to all the categories of
programs. Also the input and output are managed via specialized modules, so that
different storage policies can be easily implemented by simply plugging in
different IO modules.

2.3) Montecarlo event generators

The montecarlo event generators are a very special kind of program; their task
is to simulate physics events and produce raw event data that mimics the DAQ
output as much as possible, while maintaining as much information as possible
for the understanding of the problems to be studied. For this reason, the output is
in the form of YBOS files, where additional, montecarlo specific banks contain
the event description.

The montecarlo program, called GEANFIv, is based on the GEANTvi package,
version 3. 

3) The KLOE database system

The KLOE database system (DBMS) is made of two components:

the offline database, used mostly by the offline and montecarlo programs

the online database, used mostly by the DAQ



3.1) The offline database

The offline database needs to manage large data entities, that change slowly in
time. Thus the database system must be optimized for information retrieval and
ease of use. 

The system of choice is based on the HepDBvii package, which has the
advantage of being easy to integrate inside the A_C−based offline environment. It
is also well suited for the management of large sized entries.

The data managed by the offline database are:

geometry data

calibration parameters

run conditions

These data are accessed via an in−house developed FORTRAN library, that
acts as a front−end to the HepDB FORTRAN library calls. This additional level
simplifies the access to the database, grouping the general HepDB calls to more
specific routines.

The data insertion is indirect; to handle concurrent updates and to prevent
accidental overwriting of the stored data, the user is asked to prepare the data in a
file and submit it to an update−specific program that makes the actual update.

The database repository resides on an NFS exported file system, allowing
access to the database data to all the KLOE computing nodes.

3.2) The online database

The data managed by the online database are instead quite small and well
structured and also get updated quite often. Moreover, the access policy to these
data can vary widely across different applications. As a consequence, the online
database must be very efficient and flexible under any condition.

The system of choice is based on the relational database system (RDBMS)
paradigm. This kind of systems have proven to have all the desired qualities and
there are several commercial RDBMS available and most of them run on several
of the KLOE supported platforms. Last but not least, this kind of systems are also
quite programming language independent.



The data managed by the online database can be classified in the following
way:

access rate accessed data update rate update type

DAQ
configuration

once per run last entry

several times
per hour

any*
once every
few runs

append

run information
several times
per minute

any once per run append

slow control
data

several times
per minute

last entry

a couple of
times per day

any

once every
few seconds

append

event data
bookkeeping

very often any very often
insert

 update
 delete

support data
(such as
identifier
descriptions)

very often any rarely
insert
update
delete

* only a small subset of the data is typically in use at any given time

The above table shows how the access and update policies of distinct classes
are very different and, even inside the same class, there can be different access
policies for different kinds of data. Accurate database planning was therefore
essential for obtaining acceptable response times.

The database system is composed of an in−house developed non−privileged
daemon (database daemon), a user library and a commercial RDBMS. The users
of the database system, however,  are only aware of the user library.

The database daemon and the commercial RDBMS run on a single, trusted
central server. All communication between the two components is local and is
based on the commercial product specific interface.

On the other hand, applications can be run on any network−connected machine.
The data exchange between the applications and the database system is based on a
client/server mechanism between the user library and the database daemon.
Using TCP/IP sockets, the requests are sent to the database daemon which
processes them, using the commercial RDBMS if needed, and replies on the same
socket connection.

This approach was chosen for several reasons;

the dependence on a specific commercial RDBMS is minimized, without
however sacrificing the system performance

special configuration of the client side is not needed



part of the advanced logic is stored in the daemons, allowing:

 additional checks and restrictions

fast central caches (for example, the DAQ configuration cache reduces
the typical access time to as little as 3%)

since most of the access and update logic is located inside the daemons,
most of the updates to the database structure do not require any
modification of the final applications

The commercial RDBMS of choice is the IBM DB2 Universal Databaseviii.
However, any other SQL−based RDBMS can be easily used with slight
modifications to the database daemon. 

The online database system can work also without an underlying RDBMS,
although with some limitations. A simplified version of the database daemon has
been implemented to allow the users to work in stand alone environments such as
home PCs. Only a subset of the normally answered requests are served by this
daemon, but the implemented ones are enough for normal operation. The required
data are read from a file that the user has obtained from the central database
system. Only the data the user is interested in are transferred in order to make the
file as small as possible.

4) The KLOE archiving system

Until this point, no clue has been given as to where the data managed by KLOE
actually resides. Since this data will be used for a long time, it’s obvious that it
must be stored on permanent media, but the choice of which media to use may not
be so trivial.

At the time of writing, the fastest and most reliable way of storing and
accessing the data is based on hard disk arrays. However, the event data managed
by the experiment is estimated to reach the petabyte range, but no existing disk−
based system is able to support such amounts of data. 

As of now, the only available systems that can easily scale to the required size
are based on tape libraries. Accessing the data in a tape library can be however
quite inefficient, since the access type is essentially sequential.

The solution adopted at KLOE is a mix of the two worlds. Tape libraries are
used to store the event data, while a set of arrays of disks of reasonable size (a
total of ~1 TB at the moment) is used for database−managed data and as a cache
for the data on tape. In this section, the tape storage and cache mechanism is
described.



The archiving system is composed of a set of in−house developed non−
privileged daemons (archiving daemons), a user library and a tape library
manager. 

The archiving daemons themselves can be further divided in:

Components Description Location

storage managers archADSM

Interface to the tape library
manager. Their tasks include
content listing and file
archival and retrieval.

one on each
tape server

disk space managers filekeeper
spacekeeper

Manage the files on the disk
pools. All the files are
created and deleted by these
daemons.

one for each
disk pool

archival director archiver
Coordinates the file
movement from the disk
pools to the tape library.

one instance
on a

dedicated
server

cache manage retrieve

Manages the user requests
for event data files and
coordinates the file
movement from the tape
library to the disk pools.

one instance
on  a

dedicated
server

Figure 1: A schematic view of the archiving system
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The different pieces of the archival system communicate by means of TCP/IP
sockets. All the archiving daemons but the archival director have a standard
communication interface, and the related programming library, that is used to ask
for services. Moreover, some database data are used to synchronize their work.

The archiving, i.e. the file storage on the tape library, is fully automated and is
managed by the archival director using the following scheme:

periodically look for files that are ready to be archived

if such files exist,

give the list to one of the storage managers

the storage manager actually moves the files to tape

in case of errors retry with another storage manager

update the status of the archived files

Once the files are archived, the disk space used by them can be freed. This task
is carried out by the disk space managers of the related disk pools. Each of them
monitors the disk pool usage and when space is needed for new files, some of the
archived files get deleted.

The caching mechanism instead is user driven. When a file (or a set of files) is
needed, the application, using the supplied user library, requests the cache
manager to put the necessary files onto the disk pools. The following scheme is
used by the cache manager:

find out which of the requested files are not already on a disk pool

for each such file,

allocate the necessary space (via a disk storage manager)

ask the associated archival manager to copy the data from tape to the
specified disk pool

Note that the storage managers are the only connection between the tape library
manager and the other parts of the archiving system. In the current
implementation, based on the IBM ADSMix product, each storage manager is
responsible for the data stored in its logical tape library. This approach allows the
use of multiple storage servers even with only one physical tape library, in order
to scale easily with the increasing throughput and to prevent single points of
failure. Although this system does not guarantee 100% uptime (the data on a
server that is down are temporarily unavailable), most of the archiving system can
be operational 99.9% of the time.

The choice of a specific tape library manager for the current implementation
does not commit us however to that specific product. The external interface of the
storage manager daemons is very general, allowing the creation of other similar
daemons, specific to other products, that can coexist or substitute the current ones.
This gives the experiment the flexibility to use the best tape library manager
available at any given time.



5) The KLOE Integrated Dataflow (KID)

As stated above, the access to the files is not integrated at the system level, but
requires an additional layer to work. Moreover, the DAQ allows access to the
event data even before they are written to disk and some programs analyze also
this type of data.

To allow uniform access to all the sources of event data, the KID system has
been developed. It is composed of a user library, an A_C input module, and a
non−privileged daemon. The later is needed to give access to the resources
located on other computing nodes; one copy of it must run on every server that
wants to export its resources. TCP/IP sockets are used to communicate with rest
of the KID system.

The user interface to the KID system is based on URIsx (Uniform Resource
Identifiers) i.e. simple text descriptors that are easy to understand and remember.
The KID URIs are modular, supporting several types of access, including the
recursive URIs. 

In the following table the currently supported URIs are listed:

Description URI

simple file access YBOS:filename[?options]

memory data access SPY:buffername[?options]

remote resource REMOTE:URI@host[:portnr][?options]

merging of several
sources

MERGE:<URI|URI|...|URI>[?options]

database driven resource
selection, relative to
different kinds of data

RAW:SQL where clause[?options]
DATAREC:SQL where clause[?options]
MC:SQL where clause[?options]

The advantage of this method is ease of use. The programmer does not need to
parse the user input to select the correct data source, the KID package does it
automatically. Moreover since the URI syntax is defined only in one package,
different applications can share the same user interface. 

Obviously there are also some drawbacks. The most significant is the
impossibility to check at compile time the correctness of a static URI, delaying
some of the otherwise static checks to run time. A solution to this problem could
be in the precompiling of the URIs, but the problem does not justify the effort of
implementing the precompiler.



Let us now examine a couple of examples; the following images represent the
timetable of a couple of requests to KID. 

The left figure shows the response of KID to a request for a complete set of
events acquired during a specific run; note that no other information is given. The
KID package manages to identify the files related to that run, retrieves them from
the tape library if needed, unpacks them and supplies the calling application with
the requested events.

The right figure instead represents the KID’s response to a request for events
from two memory buffers, located on two different servers. Also in this case, the
KID package does everything by itself, making the necessary connections and
sorting the events in ascending order, based on the event number.

Figure 2: KID timetable, example 1
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Figure 3: KID timetable, example 2
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6) Security considerations

Although the scientific environment is quite an open one, some security
measures are essential. In KLOE, three types of protections are in use:

TCP/IP filtering

 prevents outside nodes to access unprotected services

IP node authorization lists

 dedicated KLOE machines are allowed to connect to additional services

user authorization lists

 KLOE users on general purpose machines are given an account specific
128−bit key that grants access to additional services

Apart from the TCP/IP filtering, implemented in the router itself, the other
security tasks are managed by the in−house developed non−privileged
authorization daemon. This daemon, executing on a trusted central server, holds
the list of the authorized users/IP nodes for the single services and communicates
with the service providers themselves via standard TCP/IP sockets.

When a service provider receives a request from a user/IP node, it asks the
requester to encrypt a unique 128−bit message (created for example based on the
current time) using the Rijndaelxi block cipher. The clear and encrypted message
are then sent to the authorization daemon for authentication. 

The security measures are applied only at the level of the first connection. Once
an application has gained access to a service, the data are sent across the network
in clear. However, in case of very sensitive data that need to be managed by the
KLOE data handling system, the full 128−bit Rijndael encryption library is
available.

Figure 4: Authentication timetable
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7) The KLOE computing environment overview

As described in the introduction, the KLOE computing environment is based
on a set of medium sized servers, connected via a switched network. The
currently managed system runs several operating systems (IBM AIX, Sun Solaris,
HP−UX, Compaq Tru64 UNIX and Linux) and all the KLOE software is written
to work at least on these platforms.

The KLOE servers can be classified in five distinct categories:

DAQ servers

offline number crunching servers

disk servers

archive servers

the database server

Figure 5: A schematic view of the current KLOE computing environment
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All of them are connected using a high speed switched network; the DAQ and
offline servers use Fast Ethernet connections to the switch, while the disk, archive
and database servers use Gigabit Ethernet connections. The fast network is needed
since most of the data need to be moved from a server to another. For example,
event data acquired on the DAQ nodes must be moved to the archive servers for
archiving, the output of the offline production is first stored on the disk servers
and then moved to the archive server for archiving, and so on.

The communication between nodes is fully TCP/IP based; remote file systems
are mounted using NFS over TCP/IP, while the KLOE specific services, like
database and archiving, are based on TCP/IP sockets.

8) Conclusions

The KLOE data handling system is designed to support a sustained DAQ
throughput of 50 MB/s at full DAΦNE luminosity for a total storage requirement
of ~1 PB.

The whole system has been tested with simulated traffic well beyond the
requirements and until now we haven’t found substantial problems in reaching the
desired throughput in such conditions. Another series of tests were made to check
the actual scalability of the archiving system. Unfortunately we are unable to test
the system with a petabyte of data, but we have done some tests using the same
amount of files that is expected at the end of the KLOE experiment. Also in this
case, no problems have been found.

Aside from tests, we have also gone through the first period of physics data
acquisition. This running period was much less demanding than the next runs will
be, having a sustained DAQ throughput of only ~3 MB/s and a total storage
requirement of ~4 TB. However, it was a good test for the whole system. Some
minor problems, especially regarding system monitoring, were discovered and
fixed, but otherwise the system proved to be reliable enough for the production
environment.
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