
of a
an be
ystem
 can be
ns. As
th for
s place
ons, is
m the

ases,
PDM)
tion
tion is
efining

h four

 for
ility of
 At the
 is the
d in
Design Patterns for Description-Driven Systems

N. Baker3, A. Bazan1, G. Chevenier2, Z. Kovacs3, T Le Flour1, J-M Le Goff4, R. McClatchey3 &
S Murray1

1LAPP, IN2P3, Annecy-le-Vieux, France
2HEP Group, ETHZ, Zurich, Switzerland
3Centre for Complex Cooperative Systems, Univ. West of England, Bristol BS16 1QY, UK
4EP Division, CERN, 1211 Geneva 23, Switzerland

Abstract
In data modelling, product information has most often been handled separately from
process information. The integration of product and process models in a unified data
model could provide the means by which information could be shared across an
experiment throughout the system lifecycle from design through to maintenance.
This paper relates description-driven systems to multi-layer architectures and
reveals where existing design patterns facilitate the integration of product and
process models. The CRISTAL system is being used to store the physics data
gathered during HEP detector construction and to track the progress of CMS
detector assembly. Data stored in the CRISTAL data warehouse will provide the
detector geometry and facilitate calibration as well as providing a CMS detector
knowledge base for physics reconstruction and analysis programmes.

Keywords: Design Patterns, description-driven systems, data modelling, UML

1 Description-Driven Systems and Multi-Layer Architectures

‘Description-driven systems’ can be defined as systems in which the description
domain-specific configuration is captured in a computer-readable form. This description c
interpreted by applications to achieve domain-specific goals. In a description-driven s
descriptions are separated from instances and managed independently - descriptions
specified and can evolve asynchronously from particular instantiations of those descriptio
a consequence a description-driven system requires computer-readable models bo
descriptions and for instances. These models are loosely coupled and coupling only take
when instances are created or when a description, corresponding to existing instantiati
modified. The coupling is loose since the lifecycle of each instantiation is independent fro
lifecycle of its corresponding description.

The semantics required to adequately model application-specific information will, in most c
be different. For example, the semantics for describing Product Data Management (
systems will be very different from those describing WfM systems. To facilitate integra
between meta-models a universal type language capable of describing all meta-informa
required. The common approach is to define an abstract language which is capable of d
another language for specifying a particular meta-model, in other words meta-meta-information.
The accepted conceptual framework for meta-modeling is based on an architecture wit
layers.

The meta-meta-model layer is the layer responsible for defining a general modeling language
specifying meta-models. This top layer is the most abstract and must have the capab
modeling any meta-model. It comprises the design artifacts in common to any meta-model.
next layer down a (domain specific) meta-model is an instance of a meta-meta-model. It
responsibility of this layer to define a language for specifying models, which is itself define

terms of the meta-meta types of the meta-meta modeling layer above. Examples of objects at this
level from manufacturing include workflow process description, nested subprocess description
and product descriptions. A model at layer two is an instance of a meta-model. The primary
responsibility of the model layer is to define a language that describes a particular information
domain. Example objects for the manufacturing domain would be product, production schedule,
composite product. At the lowest level user objects are an instance of a model and describe a
specific information and application domain.

A recent thesis [1] studied the integration of product data and workflow management through a
common description-driven data model for the CRISTAL project. In building the data model a set
of design patterns [2] were identified including the item description pattern, an enriched directed
acyclic graph pattern, a publish/subscribe pattern, a version pattern, an enriched homomorphism
pattern and use of a mediator pattern for retrieval of information from the integrated product and
process data model. It was speculated that these design patterns are part of the essential elements
of any description-driven system. Figure 1 shows how the item description pattern allows the
dependency between a description and its instantiation to be handled. In the figure the item
description pattern has been employed to provide the semantics that relate the Item class (of the
model layer) with the ItemDescription class of the meta-model layer. The pattern can also be
applied to relate an Item instance (at the instance layer) with its corresponding ItemDescription
instance (at the model layer). The multi-layer architecture which forms the basis of a
description-driven system is a direct consequence of the use of the ItemDescription pattern. Later
in this paper these patterns are used to build an ontology which facilitates not only product and
process integration, but the development of an enterprise model which spans multiple domains.

Description-driven systems features can be realised through the adoption of a multi-layered
architecture. Description-driven systems are flexible and provide many powerful features
including reusability, complexity handling, versioning, system evolution and interoperability The
study reported in this paper investigates how product and process information can be handled
through the use of a common meta-model in a so-called description-driven system. The
description-driven approach is outlined and its role in integrating product and process models for

Figure 1: The CRISTAL three-layer architecture.

ItemDescription

ItemDescription1

Item

Item1

«InstanceOf»

CRISTAL Specification
Component(s)

Meta-Model Layer

Model Layer

Instance Layer

Layers Content of a Layer Architectural Components of a Layer

manages

manages

CRISTAL Execution
Component(s)

«InstanceOf»

defines

<
<I

te
m

D
es

c
pa

tte
rn

>
>

<<
Ite

m
D

es
c

pa
tte

rn
>

>

defines

cts and
ships. A
ct and
ement
ting

 over
 and
ents, a
traction
 CMS
with

led to
embly
ytes of
rticular
tor is

d to hold
 which

d data
STAL
from
duces

d for
s for
 code
ication
f part
bject
. This
slating
. It is
lution
 with

ailed
itance,
bjects in
tions
 and,

a data warehouse example is identified. The resulting meta-model is general in form and can be
used to produce materialised views (so-called ‘viewpoints’) onto the data warehouse.

Essentially the meta-model can be used as the basis of an ontology describing how produ
processes are inter-related, as it is predicated on a set of basic concepts and their relation
prototype has been developed which facilitates this study of a common ontology for produ
process modeling. The objective of this prototype is to integrate a Product Data Manag
model with a Workflow Management model in the context of the CRISTAL (Coopera
Repositories and Information System for Tracking Assembly Lifecycles) project.

2 The CRISTAL Project

The design of the CRISTAL prototype was dictated by the requirements for adaptability
extended timescales, for system evolution, for interoperability and for complexity handling
reusability. In adopting a description-driven design approach to address these requirem
separation of object instances from object descriptions instances was needed. This abs
resulted in the delivery of a meta-model as well as a model for CRISTAL. The assembly of
is being carried out by groups, distributed geographically over several continents,
responsibilities for individual sub-detectors. Each group needs to be only loosely coup
others for final detector integration and must preserve their autonomy during the ass
process. Each CRISTAL system is set up to manage the accumulation of potentially Terab
physical characteristic data into a detector data warehouse during the construction of a pa
CMS sub-detector. The construction follows a specific production plan and each detec
assembled and tested in a step-wise fashion. A distributed object-oriented database is use
both the engineering data and the definitions of the detector components and of the tasks
are performed on the components.

An approach has been taken in the CRISTAL design, which promotes self-description an
independence. A multi-layer architecture has been developed to cater for the CRI
(meta-)model which facilitates data integration. This allows separation of definitions
instantiations through the use of so-called ‘meta-objects’, promotes object re-use, re
complexity and facilitates self-description.

The CRISTAL meta-model is comprised of so-called ‘meta-objects’ each of which is define
a class of significance in the data model: e.g part definitions for parts, activity definition
activities, and executor definitions for executors (e.g instruments, automatically-launched
etc.). Figure 2 shows the meta-object concept. In the model information is stored at specif
time for types of parts or part definitions and at assembly time for individual instantiations o
definitions. At the design stage of the project information is stored against the definition o
and only when the project progresses is information stored on an individual part basis
meta-object approach reduces system complexity by promoting object reuse and tran
complex hierarchies of object instances into (directed acyclic) graphs of object definitions
believed that the use of meta-objects provides the flexibility needed to cope with their evo
over the extended timescales of CRISTAL production and the flexibility required to cope
ad-hoc activity specification.

In designing the CRISTAL meta-model, UML has been followed; the result being a det
model, presented elsewhere [3]. This model describes relationships, types, inher
containment and other associations between the meta objects in the system. The meta-o
the model are definitions, for example, part definitions or activity definitions and the defini
are either elementary or composite in nature. The CRISTAL model is rich in semantics
consequently, could be applied to general aggregation-based data management systems.

Figure 2 shows that there is an association between a given activity meta-object definition and a
named part meta-object definition and that this association carries semantics. The left side of
Figure 2 captures the product aspects of the meta-model and the right side the process aspects.
The CRISTAL data model has been designed so that each assignment of a Part Definition to an
Activity Definition is declared for a specific purpose. In detector construction, the assignment is
made to indicate the activity to be instantiated for the assembly of a particular instance of a part
of a given part definition. Each assignment has associated with it some conditions: in detector
construction, the data model captures the definition of the conditions required for each
assignment of an activity definition to a part definition. This technique can be generalised for
other applications. For example, the association of a maintenance activity to a part will require
quite different conditions to be captured than when the detector was constructed. Also, the
association of a calibration activity to a part would require calibration-specific conditions to be
captured. In other words, the identified association between the process and part description
worlds carries rich semantic.

3 Patterns for Description-Driven Systems

In implementing the prototype ontology, it was decided to utilise the UML meta-model. Using it
to build a model of object-orientation as the meta-meta-model of the system, it is possible to
integrate different application domains and to construct a global meta-meta-data repository. This
repository is a collection of all the domain meta-models and it should experience monotonic
growth as the only way of change, since meta-models undergo careful analysis and design phases.
This incorporation of a meta-meta-model into the system allows use of the meta-model as the
abstract medium of communication for the agents, and as the execution of the aforementioned
meta-query facility.

In building an ontology, meta-models of different application domains have been used to enable
communication between software agents. However, having access to meta-models alone at the
highest level of abstraction is insufficient for applications accessing the ontology. In addition the
model of the data (i.e. its schema) must be available for applications to query. Then the
meta-model describes an abstraction of all the objects of the system whereas the model specifies
how instances of the objects, specific to a domain, are specified and together they provide the
knowledge required by agents about the system and how it can be accessed. Consequently, not
only are both meta- model and model layers required by agents in an ontology, but these two
layers must be tightly coupled.

Earlier research has shown that there are certain distinguished design patterns that recur in many
different application domains (e.g. those of PDM and WfM discussed earlier) and that should also

Figure 2: Subset of the CRISTAL meta-model.

PartDefinition

CompositePartDef ElementaryPartDef

PartCompositeMember

0..n

ActivityDefinition

ElementaryActDef CompositeActDef

ActCompositeMember

0..n

0..n

0..1

Conditions

0..n 0..n

1
0..n

1
0..n

be formally specified in the ontology. It is easy to model these patterns in an ontological
formalism since they are architectural patterns, identified by their structure and relationships. In
Figure 1 the ItemDescription pattern was identified as being central to the construction of a
description-driven system. It is through use of the ItemDescription pattern that tight coupling is
achieved between the meta-model and model layers of the ontology.

Another important element of description-driven system is the homomorphism pattern which
describes how two ItemDescription patterns are related. As a consequence of using the
ItemDescription pattern semantics in the homomorphism pattern, and the fact that semantics
(conditions) have been added to the association between item descriptions, there will necessarily
be semantics attached to the association of one item class to another. However, the constraints that
result from the use of the homomorphism pattern cannot be modeled with UML but need to be
part of the ontology. One way of representing these constraints is through the expressive power
of propositional logic. As an example, consider an acyclic graph pattern appearing as part of the
meta-model of a specific domain. That acyclic graph pattern will translate into a tree pattern at
the model layer via the ItemDescription pattern. Using UML it is not possible to express the fact
that a node in an instance of the graph pattern (at the meta-model layer) cannot recursively appear.
As a consequence it is also not possible to preclude this in the instantiated tree at the model layer.
In this case, on top of modeling these patterns in an ontological formalism, it is necessary to cater
for the constraints between meta-model and model layers through a mechanism such as
propositional logic.

One aspect that is required by description-driven systems and which must appear in an ontology,
which has been abstracted from a description-driven system, is that of versioning. As stated
earlier, versioning between multiple layers in a description-driven system must be asynchronous.
However, versioning itself is not part of object-oriented languages and therefore propositional
logic must be used to supplement UML in order to handle the constraints that emerge from the
use of a versioning pattern [2]. Since the ontology has been abstracted from a description-driven
system, it must cater for the set of design patterns that underpin multi-layer systems, including
homomorphism, versioning, complex graph, complex tree patterns etc. Figure 3 shows a
summary of the design patterns that emerge from a study of description-driven systems. The
dependencies between patterns are shown as arrows - for example the versioned graph pattern

Figure 3: Description-driven system pattern summary.

Version patt ern Complex Graph
pattern

Complex Tree
pattern

Item Description
pattern

Enriched Homomorphism
pattern

Publish/Subscribe
p att ern

Vers ioned Graph
patt ern

Mediator
pattern

The Tree of Items is
generated from many
version s of t he
Descri ption Graph.

ation is

pport
driven
rtain
rious
ficient
y and

L and
 Such
virtual
 central

ble

 Doc
uses the version, complex graph and publish/subscribe pattern - and there are constraints between
these patterns (e.g. between the versioned graph, complex tree and item description patterns).
These constraints must be represented in and satisfied by the ontological representation, which,
as stated above requires additional semantics to that provided by object-orientation.

4 Conclusions

In the CRISTAL project meta-models are used to provide self-description for data and to provide
the mechanisms necessary for developing a meta-query facility to navigate multiple data models.
Using meta-queries, data can be extracted from multiple databases and presented in user-defined
viewpoints. The object models are described using UML which itself can be described by the
OMG Meta Object Facility [4] and is the candidate choice by OMG for describing all business
models. The overall effect is to produce an integrated set of cooperating databases accessed
through a meta-query facility.

Work in the area of design patterns [2] is directly relevant to the ideas expounded in this paper.
Foote and Yoder [5] have applied the concepts of pattern representations to the domain of data
description. They conclude that candidate patterns are required to describe meta-data structures
and their inter-relationships. Design patterns are thus needed in object-oriented design to describe
meta-schemae such as CRISTAL meta-objects. Similar conclusions are being drawn by Riehle &
Gross [6] in the field of design frameworks, where the framework behaviour is driven by
repository-based descriptions and where descriptions of an organisation’s business oper
separated from the business application.

In conclusion, This paper has proposed that an ontology, which is rich enough to su
multi-domain access from multi-purpose agents, can be abstracted from a description-
system design. While UML provides sufficient expressive power to model software, ce
restrictions, such as its inability to express formally constraints or functions, are se
impediments for the modeling of sharable knowledge. UML as a language is therefore insuf
to provide sufficient semantics for agents to be able to access knowledge in the ontolog
mechanisms such as propositional logic must be used alongside UML. Together UM
propositional logic provide the expressive power required for agents to exploit the ontology.
an approach could reasonably be applied to organisations developing technologies for ‘
enterprises’ (e.g. [7]) where collections of autonomous databases could be related via a
enterprise meta-model.

5 References

1 Kovacs, Z., “The Integration of Product Data with Workflow Management Systems through a
Common Data Model”. PhD thesis, University of the West of England, 1999.

2 Gamma, E., Helm, R., Johnson, R., and Vlissides, J., "Design Patterns - Elements of Reusa
Object-Oriented Software". Addison-Wesley Longman Publishers, 1995.

3 Baker, N. et al., "An Object Model for Product and Workflow Data Management". Proc. Workshop
at the 9th Int. Conference on Database & Expert System Applications. Vienna, Austria August 1998.

4 Object Management Group Publications, Common Facilities RFP-5 Meta-Object Facility TC
cf/96-02-01 R2, Evaluation Report TC Doc cf/97-04-02 & TC Doc ad/97-08-14 .

5 Foote, B., and Yoder, J., "Metadata and Active Object-Models". Proc. of the Int. Conference on
Pattern Languages Of Programs, Monticello, Illinois, USA, August 1998.

6 Riehle, D., and Gross, T.,"Role Model Based Framework Design and Integration". Proc of the 1998
Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA’98), pp.117-133. ACM Press, 1998.

7 Hardwick, M., Spooner, D., Rando, T., and Morris, K., "Sharing Manufacturing Information in
Virtual Enterprises", Communications of the ACM 39(2):46-54, 1996.

	Design Patterns for Description-Driven Systems
	Abstract

	1 Description-Driven Systems and Multi-Layer Architectures
	2 The CRISTAL Project
	3 Patterns for Description-Driven Systems
	4 Conclusions
	5 References

