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Abstract

We show how the systematic use of abstract interfaces and polimorphism has allowed a
flexible and estensible management of the Particle Identification calibration data samples and
their persistency. Moreover the design, originally developed to deal with charged particles,
has permitted a natural extention to neutrals without affecting the existing code and with a
large reuse of it.

1 Introduction

The Instrumented Flux Return (IFR)[1] subdetector of the BaBar[2] experiment is designed for
muons and neutral hadrons identification. The iron yoke of the magnet is segmented in a non-
uniform way and its gaps are instrumented with Resistive Plate Chambers (RPC), 19 layers in the
barrel and 18 layers in the endcaps. Two additional inner layers of cylindrical RPC are installed in-
side the coil. Each RPC layer is equipped with two planes of strips, for a digital readout. The strips
are grouped in charged and neutral clusters using criteria that are described in another paper[3].
Discriminating variables are extracted from the clusters to perform particle identification.

2 Particleldentification in the IFR

Let x be a set of discriminating variables, p a set of parameters (momentum and/or polar angle)
and A a particle hypotesis. If the probability density functions f,ih)(xk; p) in each hypothesis are
known, then the likelihood to observe the values x of the discriminating variables in the particle
hypotesis h is (if the variables are not correlated):

L(x;p | h) = H I (24 p) (1)

Since these functions are not a priori known they have to be estimated from Monte Carlo
simulation or high purity unbiased real events samples
Combining likelihoods from more subdectectors is straigthforward:

Lror(h) = [ ] Laet(h) )
det
At the analysis level, the likelihood from expression (2) has to be further normalized to the
number of expected particles for the given hypothesis.
Another frequently used quantity is the significance level defined by:

$(xops | h) = 1 — / P(x | h)dx
* P(x‘h)>P(xobs|h)



This quantity has the property that its distribution is flat for the correct hypothesis.

3 |IFR Particle I dentification Software packages

The software consists in the following packages:

e IfrPidData contains objects that model the discriminating variables definition and the
distributions and parametrization of the discriminating variables and the likelihood.

e IfrPid contains classes that manage the summary of the data extracted from calibration
event samples and their association with the particle hypotheses. It depends on IfrPidData.

e IfrPidP implements the persistency of all the objects as described in section in section 6.
It depends on both IfrPid and IfrPidData.

The user retrives the likelihood and the significance level trought an object of type IfrPidInfo
defined in the IfrPidData package. It inherits from AbsPidInfo, a common base class of the
BaBar software, whose interface let the user access the likelihood and the significance level in
a given particle hypothesis. Moreover, it has references to the basic reconstruction objects from
which discriminating variables are calculated. Since it takes care to dispatch the likelihood and
significance level requests to the objects defined in the IfrPid package, the user is unware of
the way the likelihood and significance level are estimated. The discriminating variables are cal-
culated in the following way: a base class IfrAbsDiscrFunct defines the interface to extract
the discriminating variable value from an IfrPidInfo object. For each discriminating variable,
a concrete class, inheriting the interface from IfrAbsDiscrFunct, polimorphically implements
the interface.

4 Probability density functions and likelihood parametrized distributions

Probability density functions (pdf) of the discriminating variables and likelihood distributions are
parametrized as a function of measured particle variables like the momentum or the traversed IFR
sections (barrel, endcaps ...), etc.

For each distribution, at fixed value of the parameters, an IfrHisto object samples a pdf as
a binned histogram. An IfrHistoArray object contains an IfrHisto object for each bin of the
parameter space. The strategy pattern[4] is used to implement a flexible binning of the discrim-
inating variable values and the parameters. The IfrHisto class has the responsibility to fill the
histogram and to retrive the number of entries, but does not know how its data content is binned. It
refers to an external object of class type IfrPartition, which is a pure abstract base class whose
subclasses polimorfically implement the methods which define the concrete binning. For instance,
IfrHistoFixedBinPartition implements fixed binning for an IfrHisto, leaving room for a
different binning solution as variable binning. In order to have an extensible choice for the num-
ber of the parameters and their binning, the same design pattern is applied to IfrHistoArrays:
IfrHistoArrayPartition s the base class whose interface is currently implemented by its two
subclasses: one defines fixed binning in one parameter (IFR angular section), another one defines
fixed binning in two parameters (momentum and IFR angular section). Different choices in the
number of parameters and their binning can be added very easily.

In order to provide the significance level the observer pattern[4] is used. An observer of
the IfrHisto object calculates its cumulative distribution using a cache that is invalidated when
the histogram is updated.



5 Calibration samples management

The data extracted from an events sample is summarized by an object. The design is divided in
three levels of abstraction:

1. An IfrSampleSummary class is a pure abstract interface; client objects use this type, de-
coupling themselves from the concrete implementations. The interface consists of a set of
selectors to obtain likelihood and significance levels and modifiers to accumulate the data.

2. The second level of abstraction is provided by the IfrLikelihoodSampleSummary class
which inherits the interface from the IfrSampleSummary class. It implements the selector
and modifier methods of the parent IfrSampleSummary and owns the following objects:

e the discriminating variables, their distributions and their partitions;
e an IfrHistoArray and an IfrPartition which contain the likelihood distribu-
tion;
e anIfrHistoArrayPartition defining the parameters and their binning.
Note that every reference is a base class and the responsibility to create the concrete objects
is delegated to the lower level of abstraction.

3. The objects of concrete type IfrChargedSampleSummaryand IfrNeutralSampleSummary
handle the differences between the charged and the neutral identification. Their construc-
tors create the concrete discrimination functions, histograms and partitions, and implement
specific methods.

The association between a sample summary and one or more particle hypotheses are man-
aged by a discriminator object of type IfrLikelihoodDiscr. It mantains an association map
between an object of type PdtEntry (from the Particle Data Table package[5]), which uniquely
defines a particle hypothesis, and a object of type IfrSampleSummary.

In order to choose at run-time the association between one or more particle hypotheses to a
data sample summary, the class provides a method to associate an IfrSampleSummary object to
a PdtEntry object. For instance, at the present moment, a muon sample is associated to the muon
hypothesis and two samples of positive and negative charged pions are associated to the positive
and negative charged hadron hypotheses. The associations are set by the user in a tcl script like in
the following example:

module talk IfrChargedCalib
associate muonSample mu+ mu-
associate pion+Sample pi+ K+ p
associate pion-Sample pi- K- anti-p
exit

As more specific samples are accumulated, more refined associations can be set. A class
IfrSampleManager has two global istances (one for charged and the other for neutral) which
create the appropriate discriminator and provide access to it. The existence of exactily two istances
is enforced using a modified singleton pattern[4] (“multiton”).

6 Persistency of the objects

Obiject persistency is currently implemented using Rogue Wave Tools.h++[6] which provides a
persitency mechanism on flat files. The migration to Objectivity Database[7] is under develop-
ment. For each inheritance class tree of the previously described model a visitor pattern[4] is
applied to decouple the transient model from the persistency technogy. Given an inheritance tree



(ConcreteXYZ1, ConcreteXYZ2 subclasses of AbsXYZ), an abstract XYZPersister class pro-
vides the interface to “persist” all the concrete types. The concrete persister subclass that imple-
ments —say— Rogue Wave technology creates the persistent object corresponding to a given tran-
sient one in the inheritance tree (ConcreteXYZ1RW, ConcreteXYZ2RW subclasses of AbsXYZRW).

Adding a new technology, like Objectivity DB, requires no change in the existing code

(“Open/Close principle”).
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Figure 1: Persistency class diagram

7 Conclutions

The design described reaches the following goals:

Likelihoods and significance levels for any particle hypotheses are provided. Discrimination
variables can be added or removed in a trasparent way.

Calibrations samples are managed in such a way that the association of the samples to one
or more particle hypotheses is possible at run time in a flexible way.

Commonalities between the charged and neutral particle identification are exploited imple-
menting the differences only at the most concrete level.

The object persistency is managed to be estensible to other solutions without affecting the
design of the transient objects.
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